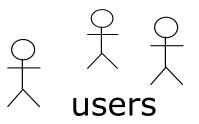
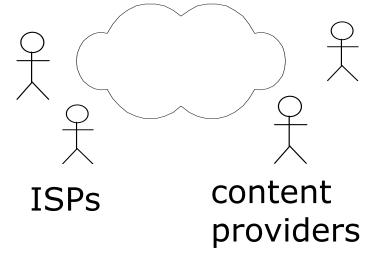
Towards MultiPath TCP Adoption: Challenges and Opportunities

A. Kostopoulos, H. Harma, T. Levä, B. Heinrich, A. Ford and L. Eggert

NGI 2010 – 6th Euro-NF Conference on Next Generation Internet June, 2010


Athens University of Economics and Business – RC



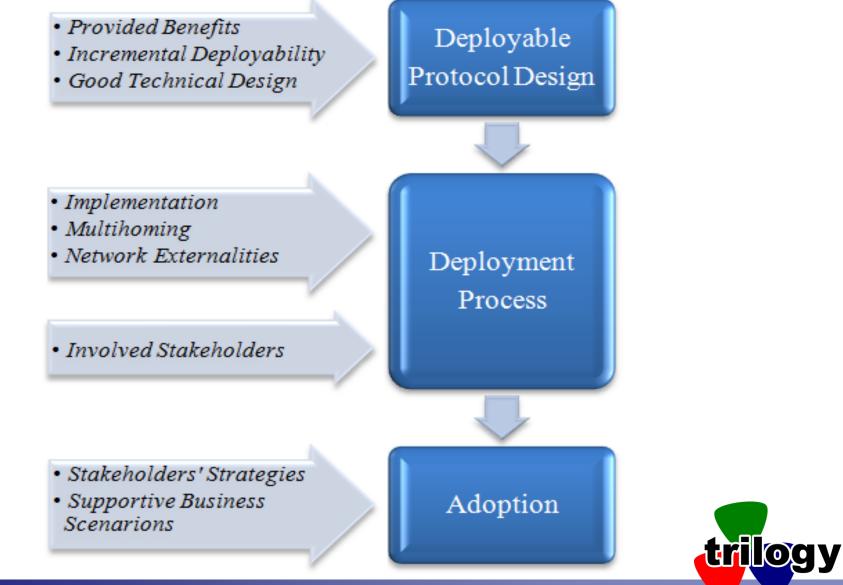
Introduction

- Internet → reach fundamental capability limits
- Increasing resilience and performance requirements
- FI research → develop new architectures and protocols that address emerging technical deficiencies.
- Design solutions that deliver effective and efficient control of resource sharing.

Tussles in Internet playground

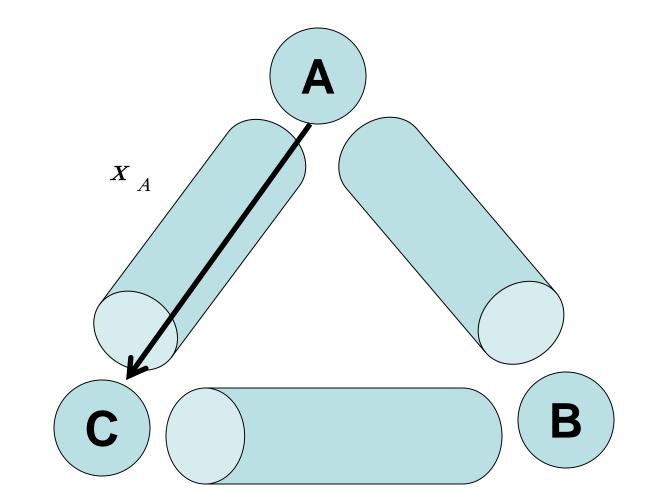
Motivation

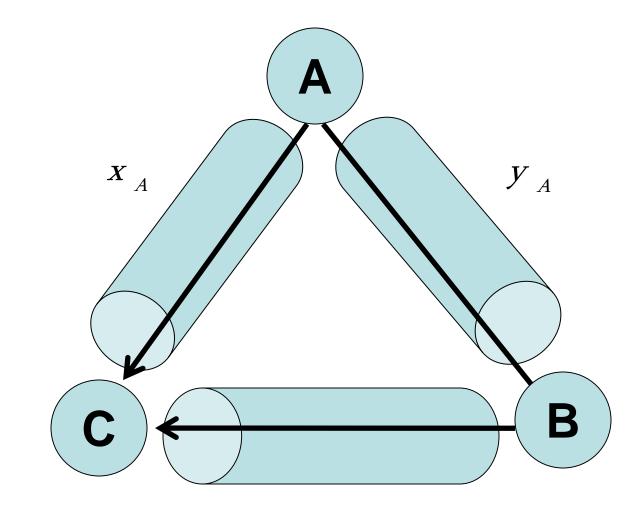
- Transport protocols \rightarrow only a single path between a source and a destination
 - limits the achievable throughput.
- Firewalls / middleboxes reject packets which are not using TCP or UDP
 - \rightarrow affected the deployment of other transport layer protocols
 - \rightarrow MPTCP has to overcome this challenge as well.
- **Multipath TCP** uses multiple paths at the same time to transmit the data belonging to a single TCP connection.
- In the case of congestion along a path, or even a complete path failure, MPTCP shifts traffic onto other available paths that have available capacity.
- Reliability, flexibility and throughput.



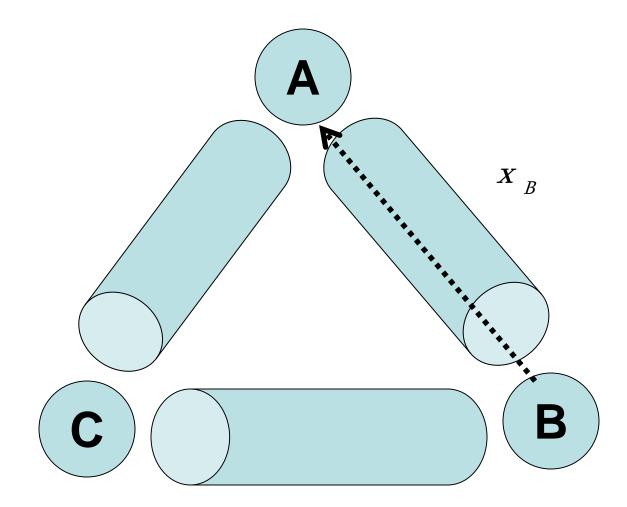
Outline

- The network protocol deployment differs from the diffusion of end user centered innovations (consumer products).
 - Operating system vendors play a major role.
 - Users cannot directly select network stacks for their end systems.
- New challenges for the involved stakeholders.
 - A framework for analyzing MPTCP deployment
 - *Key factors that make MPTCP deployable*
 - Identification of the involved stakeholders
 - Deployment process
 - Possible scenarios that facilitate the required steps to support MPTCP adoption.

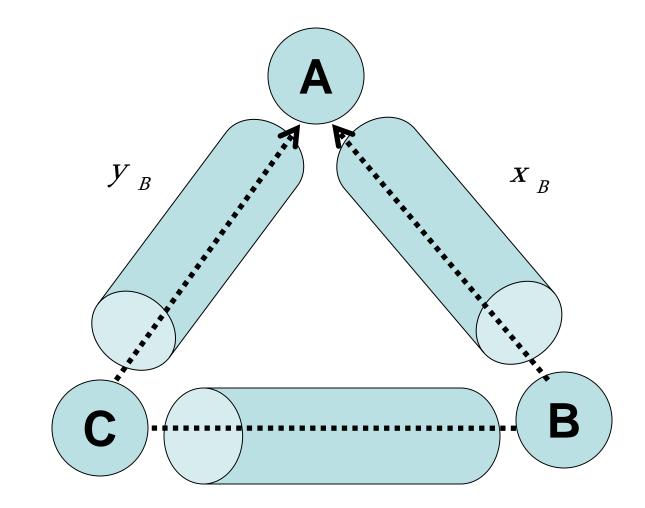

Proposed Adoption Framework


Provided Benefits

- A real need is met \rightarrow An identified problem solved better than other approaches.
- An MPTCP connection uses several paths for a single connection at the same time:
 - In case of congestion or a failure along one path, MPTCP can make greater use of less congested alternate paths.
 - MPTCP pools the available capacity along all paths for a single connection
 → faster transfers than traditional TCP.
 - Coupled congestion control
- <u>Mobile (battery-powered devices)</u>: Sending and receiving data across multiple radio interfaces increases the energy consumption of network communication
- Interesting feature \rightarrow switch an established connection between different paths or
 - aggressively switch an MPTCP connection to the most energy-efficient path

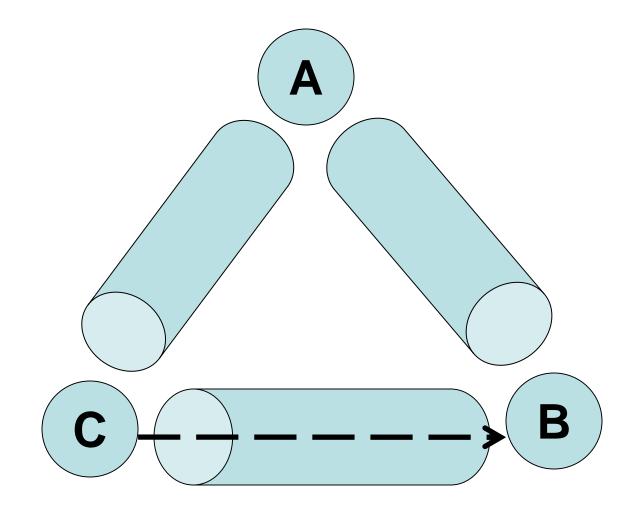


trilogy

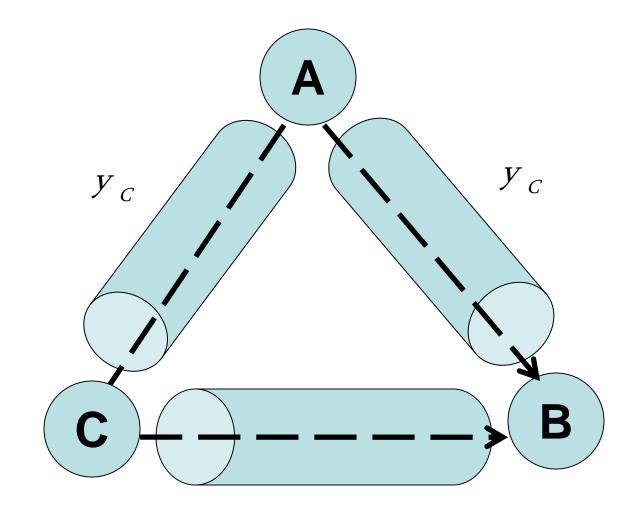


trilogy

 \boldsymbol{y}_A



trilogy


trilogy

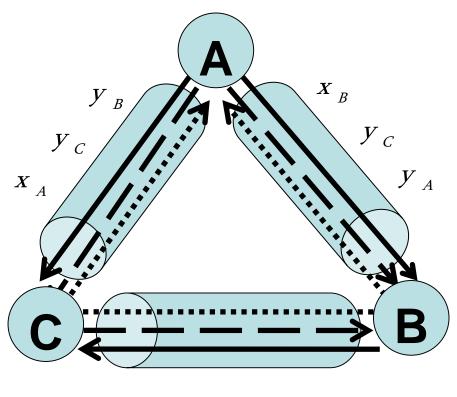
 y_{B}

 \boldsymbol{X}_{C}

Uncoupled CC

 $m ax \left[U(x) + U(y) \right]$ s.t. $x + 2 \cdot y \leq C$

• Total throughput is not maximized:


$$x + y = \frac{3 + 2\sqrt{2}}{4 + 3\sqrt{2}} \cdot C < C$$

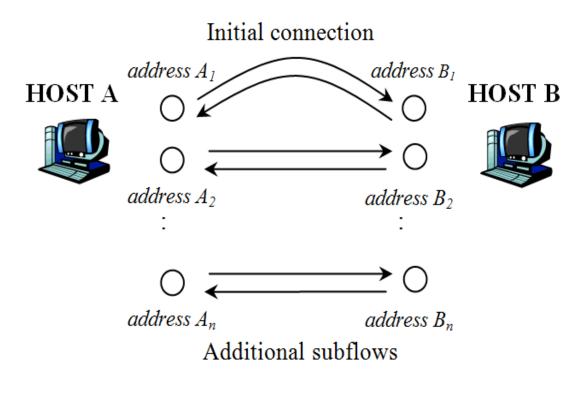
Coupled CC

$$max\left[U(x + y)\right]$$

s.t. x + 2 · y ≤ C

Total throughput is maximized

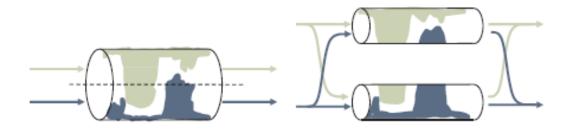
$$x + y = C$$



$$X_C \quad Y_B \quad Y_A$$

Incremental Deployability

- The deployment of a new technology is encouraged when related technologies already exist.
- Applications: backward-compatible extension of standard TCP. Offers an unmodified *sockets* API → not need to modify / recompiled applications
- <u>Network:</u> each MPTCP flow → like a single standard TCP connection with some new option headers. The connection starts as a normal TCP.



Good Technical Design

- Designing a protocol that follows "good principles" enhance deployment and interoperability.
- **Design for Tussle:** multiple stakeholders with conflict interests interact
 - Tussle-aware protocol designs have better chances at deployment in the long-term

Resource Pooling

- when resources in a network can be pooled, effectiveness of the network will be improved.
 - *pooling* \rightarrow a set of resources appear as a single resource of aggregate capacity.
 - ➢ MPTCP → rp mechanism, sends data along multiple paths, uses ccc algorithm, allows the traffic load to be relocated to /spread over several paths.

Good Technical Design

Information Exposure

- sufficient information about resource usage should be exposed to support an efficient allocation
 - MPTCP monitors the congestion signals on each individual subflow, to respond appropriately to resource usage and congestion by shifting load between the subflows.

Given States Fuzzy Ends

- end points allowed to delegate functions to the network
 - MPTCP \rightarrow end-to-end, but
 - proposed architecture → sufficiently extensible to allow the development of MPTCP proxies, placed within the network without the need of endpoints to be multi-homed themselves.

Key Stakeholders

- \blacktriangleright OS vendors \rightarrow implement MPTCP in OS for use on end systems
- ▶ End users (i.e., individual users, service providers, CDNs) \rightarrow own end systems
- \blacktriangleright <u>ISPs</u> \rightarrow provide connectivity for multi-homing
- Fundamental requirements for MPTCP Deployment
 - Availability of OS Implementation
 - Installation of MPTCP-capable OS to end systems
 - Multi-homing
 - Key role of other end points and network externalities

• Availability of OS Implementation

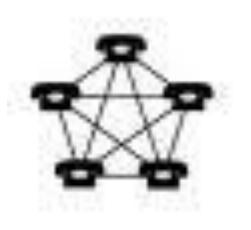
- Changes required only to the TCP/IP stack of end systems
- \rightarrow an OS update that adds MPTCP support needs to be available
- * Key Stakeholder: <u>OS vendors</u>
- Motives for implementing MPTCP in OSs
 - Pressure from end-users →
 - *if they are MPTCP aware / demand problem solution that MPTCP alleviates*
 - **Pressure from (high) application developers** \rightarrow *their products could be enhanced*
 - **Own business interest** \rightarrow *direct business benefits (NOKIA Ovi)*
 - Competitive environment → "leader" role of an open source OS incentives for commercial OS vendors

Actual usage – enabled by default in shipping configuration

- Installation of MPTCP-Capable OS to End Systems
 - ♦ Key stakeholder: <u>end-users</u> → ultimate control over their devices
 - conscious decision to deploy MPTCP
 - content providers → increase QoS
 - "heavy users" → large traffic volumes
 - get the MPTCP unbeknownst to them
 - **domestic users** \rightarrow purchase a new device / automatic OS updates
- ISPs may foster MPTCP use \rightarrow *providing an MPTCP proxy service*
 - intercepts standard TCP traffic generated by end systems and translates it to MPTCP.

Multihoming

♦ Key stakeholders: <u>end-users</u> \rightarrow *acquire additional Internet access connections*


<u>ISPs</u> \rightarrow business interests (more access links, MPTCP proxies)

- User's desire for multihoming
 - Run MPTCP, but most probably:
 - need for ubiquitous access for a mobile user
 - back-up connections for content providers.
- Many end-users may already have multi-homing capability available (enterprises, academic networks) → no required hardware updates
- ISPs have monetary motives to improve support for it:
 - possibility to sell more access connections
 - MPTCP can also help ISPs to balance the load in their networks

- Other End-points and Network Externalities
- o large number of users that adopt MPTCP
- the probability of a successful MPTCP connection establishment is increased
- a client and a server
 - i.e. Google deploy MPTCP → update a significant fraction of its servers at the same time (externalities in jumps)
- between two clients
 - Specific interest for peers he mostly connects to → if he often accesses a specific service, it is important to him that the particular service is MPTCP-capable

Scenarios Supporting Adoption

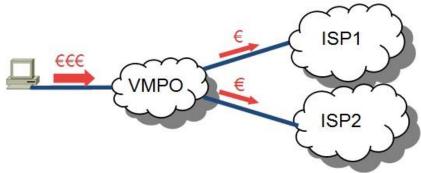
- Both Ends in one Hand

- Multi-homed devices and content/application servers are under the control of one stakeholder, i.e. companies that provide a mobile device for their employees to use company applications remotely over WLAN/3G could significantly benefit from MPTCP.
- An end-user accessing content using access from a provider which controls both end-user devices and content servers, (Ovi / iTunes service, both delivering devices and services/content).
- Consumers probably MPTCP-unaware → *perhaps opportunistic adopters of MPTCP when it is implemented by device manufacturers.*
- ✓ The deployment in the client devices (OS vendor's enabling MPTCP by default)
 → key driver to the adoption on the client-side if the end-user is multi-homed already.

Scenarios Supporting Adoption

- Lobbying

- Lobbying towards OS vendors who have to implement the new protocol in their network stacks.
- Key players (i.e. Microsoft 85% of PCs OS worldwide)
 - \rightarrow convinced of the merits of MPTCP
- Organizations that represent end-users with a vital interest for MPTCP
 - \rightarrow take on the initiative


- End-user decision

- "Heavy" users and operators of large content sites
 - \rightarrow lots of data direct interest in the increased resilience and throughput.
- Once the protocol has been made available by OS vendors \rightarrow decision for adoption depending on:
 - the involved cost for OS upgrade installation
 - additional cost physical access lines for multi-homing
 - availability of MPTCP enabled clients or peers.

Scenarios Supporting Adoption

- ISP Support

- Multi-homing \rightarrow considerable barrier to MPTCP adoption due to costs for additional connections.
- Offer cheaper access bundles \rightarrow incentives for ISPs (*lock-in, improved traffic engineering control*)
- Virtual Multipath Operators could offer such bundles by buying / leasing access lines, potentially of different kinds, from other ISPs → increase in competition driving factor for ISPs to offer their own price-reduced bundles

- MPTCP-enabled access from ISPs → a value-added service by providing a MPTCP proxy service to end-users → Cost-effective solution – no requirement for extra access link /MPTCP-enabled OS.
 - increased resilience and throughput, but limited to one access connection / not realize the full potential benefits of MPTCP

Conclusions and Future Work

- The adoption of transport protocols differ from diffusion of end user-centered innovations
- Performance, reliability, flexibility beneficial, **but** not the main drivers for adoption.
- Role of end users in not of primary importance \rightarrow not necessarily conscious adoption decision
- Mainly in hands of operating system vendors \rightarrow *deployment decision to enable by default*.
- The deployment of MPTCP-enabled OS will take different channels:
 - roll out on new devices delivered with new operating systems
 - automatic software updates to the deployed base (often without awareness of end users)
 - intentional installation by operators of large sites (e.g., content providers)

Future Work

- Compare the MPTCP-like solutions in other layers \rightarrow is transport the proper layer?
- How efficient is MPTCP for short flows?
- Applying different pricing schemes

THANK YOU FOR YOUR ATTENTION !!

Alexandros Kostopoulos (<u>alexkosto@aueb.gr</u>)

Athens University of Economics and Business

Network Economics and Services Group (http://nes.aueb.gr)

