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Abstract. Service providers face the ever-increasing problem of meeting cus-
tomer expectations while maximizing profits. This optimal balance is very im-
portant for delivering better service quality to users and keeping costs under 
control through efficient resource allocation. In this paper we suggest optimal 
strategies for managing system trustworthiness in two different contexts. In the 
first one the provider has limited information about the users’ trustworthiness 
preferences, which have to be satisfied on every transaction. In the second con-
text, the provider knows what the effect of possible outcomes on customer’s 
trust level and, given that the customer will perform a certain number of trans-
actions, would like to know whether the system trustworthiness should be man-
aged at any point in time in order to meet customer’s expectations in a cost-
effective way. The optimality of the proposed strategies is demonstrated via 
both analytical techniques and simulations. 

Keywords: Trustworthiness management, Trust management, optimal strate-
gies, trust computational model, run-time, composite systems 

1 Introduction 

Most user interactions on the Internet, e.g., checking email correspondence, sharing 
thoughts with online friends, buying from digital stores, watching movies online usu-
ally involve more than one provider, even though this is not directly observable by the 
average end-user. Retail providers of ICT (Information and Communications Tech-
nology) services, for example, are increasingly relying on cloud computing providers 
for computational, storage and networking services.  



It is expected, however, that the outsourcing trend will not diminish in the future. 
Recent initiatives, such as smart transportation systems, ambient-assisted living, etc., 
follow the paradigm of Service-Oriented Architectures in which application compo-
nents are orchestrated to provide services to other components over a network. Each 
of those components can belong to different providers, and in most cases, supply is 
under competition. 

While the popularity of cloud computing is mostly attributed to reduced average 
cost, elasticity and reliability stemming from economies of scope and scale, the in-
creased interdependencies and the inability to control all operational aspects increase 
the complexity for providers of composite services to meet security and other trust-
worthiness objectives. A system’s trustworthiness can be assessed with several met-
rics, such as mean availability, mean response time, minimum encryption, etc. For a 
detailed analysis of trustworthiness metrics, including security ones, the interested 
reader is redirected to [1]. We should note that a trustworthiness metric can be objec-
tively measured, in the sense that two separate entities can agree on a single formula 
and given the same (or a sufficiently large) set of run-time observations/evidences 
they would eventually reach the same outcome.  

This paper focuses at the production phase of such composite systems and, more 
specifically, how retail providers should meet customer expectations while maximiz-
ing profits. This optimal balance is very important for delivering better service quality 
to users, increasing market share by gaining users’ trust, mitigating adverse effects 
and keeping costs under control through efficient resource allocation. However, 
achieving this balance is not an easy task for the following reasons. The retail provid-
er has no perfect information about the actual trustworthiness of each individual com-
ponent/service instance and the customer expectations are usually unknown.  

The provider could compare the trustworthiness of candidate components by que-
rying a marketplace that carries detailed trustworthiness certificates, such as the ones 
described in [2]. Furthermore, the provider could offer SLA’s (Service Level Agree-
ments) where the exact security/trustworthiness levels are described as a set of met-
rics and their respective target values. Then we could assume that the user would not 
trust the provider again in the future if any threshold value was not met. In this paper , 
however, we will assume that the retail provider does not want to offer SLAs.  

More specifically in Section 2 we assume that the provider is paid for each suc-
cessful transaction only and has some information about the distribution of users’ 
trustworthiness preferences. Its purpose is to maximize the expected profits by finding 
the component to replace a failed one. While the authors of [3] suggest a Genetic 
Algorithm for selecting the components of a system so that a function of cost and an 
aggregate metric of trustworthiness is maximized, they ignore user’s expectations. 

In Section 3 we will assume that the user will interact with the provider’s system 
several times and the number of transactions is known in advance (i.e., is the only 
term of the contract). For example, a bank manager that wants to process all saving 
accounts (e.g., calculate interests etc.) at the end of the day and enters into a monthly 
contract with a cloud computing provider. Whenever the cloud provider believes that 
the customer’s trust is lower than a certain threshold the former could make the nec-
essary changes to system in order to regain customer’s trust after a few transactions. 



The optimal changes that should take place at any point in time are based on the fi-
nite-stage dynamic programming model of [4], which has been adapted so that chang-
es are restricted by the available components (instead of assuming that trustworthiness 
is a continuous function of effort which is more suitable for services offered by hu-
mans).  In order to estimate the current user’s trust level we employ a trust computa-
tional model that has been described and validated in [5]. Finally, we conclude the 
paper with summary and possible future extensions in Section 4. 

2 Managing system trustworthiness for individual transactions  

2.1 The model 

We assume that whenever the system during a particular transaction fails to meet 
user expectations regarding response time (e.g., a deadline specified in SLA or system 
performance exceeds user’s patience) then the user has the ability to cancel the trans-
action and pay nothing to the provider. Otherwise, she pays 𝑟 units to the provider. 
The exact user patience is unknown to the provider. Suppose, however, that the pro-
vider knows that user’s patience 𝑇 is exponentially distributed with mean 1/𝛽, so that 
𝑃 𝑇 ≥ 𝑡 = 𝑒!!".  
The provider is interested in maximizing her expected profit from each transaction. 
She is able to monitor the behaviour of all system components at run-time and thus 
can identify when a particular component is unavailable; the adverse behaviour we 
are focusing on this section. Let system 𝑠 perform functions 1,… , 𝑓 and assume that 𝑙 
components are capable of performing function 𝑚 (𝑚 ≤ 𝑓). These components, de-
pending on the context, can be machines running software instances, networking as-
sets (e.g., routers), as well as, individuals (such as personnel performing a task) and 
their equipment. Each candidate component 𝑔 ≤ 𝑙 has known trustworthiness metrics 
and cost 𝑐!, which is paid to the suppliers only for successfully completed transac-
tions. This information can be retrieved from a marketplace of alternative subsystems 
or supplied by the provider itself. 

Furthermore, we denote with 𝑎! ≥ 0 the probability that the component 𝑔 will be 
functioning after being installed. The mean delay of component 𝑔 to produce the re-
quired output is 𝐷!, which is assumed to be exponentially distributed with parameter 
𝜆!, while 𝐷!,𝐷! are independent ∀𝑔 ≠ ℎ. The fixed time that is needed for integrat-
ing any new component to the system and checking its availability is denoted with 
𝑑 > 0; there is always the possibility that the newly deployed component is found 
unavailable after being installed and another component has to be deployed.  

At 𝑡! a transaction starts and assume that the provider checks every 𝑧 time periods 
(e.g., seconds) whether all components are in healthy condition, or unavailable due to 
an attack, or failure. Suppose also that at 𝑡!!! all components were running but at the 
next inspection time (𝑡!), and before the transaction in question has been concluded 
or the user patience is exhausted, the provider finds component 𝑘 to be unavailable. 
Her options would be to either replace it with a new one or do nothing (if for example 
the expected transaction revenues don’t recover the expected costs). 



We have the following theorem: 

Theorem 1: The provider should try candidate components in the order 1,2,… , 𝑙 pro-

vided that 𝑊! ≥ 𝑊! ≥ … ≥ 𝑊! ≥ 0 , where 𝑊! =
!!!! !!

!!
!!!!

!!!!

!! !!!! !!!!
.  

Proof: If the provider selected component 𝑔 and given that at time 𝑡! the user’s pa-
tience was not exhausted, then the probability that the both the component integration 
and the transaction will be successfully completed is given by: 

𝑃𝑟[𝐷! = min 𝐷!,𝑇 |𝑇 > 𝑑] = 𝑃𝑟[𝐷! = min 𝐷!,𝑇 &𝑇 > 𝑑] 𝑃𝑟[𝑇 > 𝑑] (1). 

Given that at time 𝑡! the user’s patience is not exhausted, then the probability that the 
user will still be waiting for the outcome after 𝑑 time units is given by: 

𝑃𝑟 𝑇 > 𝑡! + 𝑑|𝑇 > 𝑡! = 𝑃 𝑇 > 𝑑 = 𝑒!!! (2). 

Furthermore 𝐷!,𝐷!,… ,𝐷! and 𝑇 are independent exponentially distributed random 
variables with rate parameters 𝜆!, 𝜆!,… , 𝜆!, and 𝛽 respectively, the min  {𝐷!,𝑇} is also 
an exponentially distributed random variable with rate parameter 𝜆! + 𝛽. Thus  

 𝑃𝑟 𝐷! = min 𝐷!,𝑇 |𝑇 > 𝑡! + 𝑑 = 𝜆! (𝜆! + 𝛽) (3). 

Substituting Eq. (2) and Eq. (3) into Eq. (1) results in 

𝑃𝑟 𝐷! = min 𝐷!,𝑇 &𝑇 > 𝑡! + 𝑑 =
𝜆!

𝜆! + 𝛽
𝑒!!! 

The provider should replace component 𝑘 with 𝑔 instead of ℎ if the following ine-
quality holds: 

𝑟 − 𝑐! 𝑎!
𝜆!

𝜆! + 𝛽
e!!! + 𝑟 − 𝑐! 1 − 𝑎! 𝑎!

𝜆!
𝜆! + 𝛽

e!!!"

≥    𝑟 − 𝑐! 𝑎!
𝜆!

𝜆! + 𝛽
e!!! + 𝑟 − 𝑐! 1 − 𝑎! 𝑎!

𝜆!
𝜆! + 𝛽

e!!!" 

, where 𝑎!
!!

!!!!
e!!! is the probability that the component 𝑔 is found to be available 

(after 𝑑 time units) and produced its output before the user’s patience had been 
exhausted. With simple algebra transformations and rearrangements we have the fol-
lowing inequality:  

𝑟 − 𝑐! 𝑎!
!!

!!!!
e!!! 1 − 1 − 𝑎! e!!! ≥ 𝑟 − 𝑐! 𝑎!

!!
!!!!

e!!! 1 − 1 −

𝑎! e!!!  (4) 

Since  𝛽 > 0, 𝑑 > 0 we have that e!! > 1 and given that   𝑎! > 0 it follows that 
𝑎! > 1 − e!!

  
e!! − 1 + 𝑎! > 0. 



Furthermore,  e!!! > 0 and  we have that  e!!! e!! − 1 + 𝑎! > 0
  
1 − e!!! +

𝑎!e!!! > 0
  
1 − 1 − 𝑎! e!!! > 0. 

Similarly, we have that 1 − 1 − 𝑎! e!!! > 0  and thus we can divide each term of 
Eq. (4) with 1 − 1 − 𝑎! e!!! 1 − 1 − 𝑎! e!!! , getting the following 
inequality: 

𝑟 − 𝑐! 𝑎!
𝜆!

𝜆! + 𝛽
e!!!

1 − 1 − 𝑎! e!!!
≥

𝑟 − 𝑐! 𝑎!
𝜆!

𝜆! + 𝛽
e!!!

1 − 1 − 𝑎! e!!!
  
𝑊! ≥ 𝑊! 

Again, the expected transaction revenues should cover the expected costs and thus 
𝑊! ≥ 𝑊! ≥ 0.  ∎ 

2.2 Evaluation  

In this section we will compare the cost-effectiveness of the optimal strategies to oth-
er simpler strategies, using simulations. The rest strategies are: ‘Least Cost Compo-
nent’, ‘Highest Mean Availability Component’, ‘Least Mean Response Time Compo-
nent’ and ‘Random Selection’. 

We created a discrete-time simulator where one transaction is processed each time 
and the initial system (composed of a single component) has a certain probability of 
failing/becoming unavailable. Each experiment consisted of 10 candidate compo-
nents, 10,000 transactions for each strategy, with fixed revenue (150 monetary units), 
and integration delay 𝑑 (100 time units). Furthermore, each experiment is performed 
for 10 possible user-acceptable durations, from 100,000 down to 100 time units.  

For each transaction, costs and mean response times are drawn from a uniform dis-
tribution and assigned to each candidate component (in [1, revenue] and [200, 2000] 
respectively). Furthermore, the mean availabilities for both initial and candidate com-
ponents are selected from a uniform distribution in [0.7,1]. Finally, the user patience 
is selected from an exponential distribution based on the experiment’s parameter. 

The provider monitors periodically the system in order to be able to manage trust-
worthiness; each poll can be seen as a Bernoulli experiment. Whenever the system is 
found unavailable, a replacement takes place using one of the supported strategies. 
We assume that when a component is found unavailable then it remains unavailable, 
so in an extreme scenario the transaction fails because none of the components can 
handle the request. If the selected component is available then the transaction will fail 
if only its response time is larger than the remaining user’s patience/ deadline.  

In Figure 3 the provider’s average profit for each strategy in case of unknown user 
patience is presented. As expected, the proposed strategy achieves the highest average 
profit, followed by the strategy ‘Least Cost Component’. Furthermore, when users are 
patient the ‘Least Mean Response Time Component’ reaches significantly lower prof-
its than the previous two, but for more critical systems this strategy scores higher than 
the ‘Least Cost Component’ one. The ‘Random Selection’ and ‘Highest Mean Avail-



ability Component’ strategies achieve consistently lower profits. Similar trends are 
obtained for different parameter values. 

 
Fig. 1. The average profit for each strategy in case of unknown user patience 

3 Managing system trustworthiness for a set of transactions 
based on estimated user’s trust level 

In this section we will describe an approach for allowing a provider of composite 
system to minimize the total expected cost of meeting the expectations of a certain 
customer.  We will first describe the trust computational model that is used for trans-
lating the subjective user expectations into objective trustworthiness targets. 

3.1 A personalized trust computational model 

The trust computational model distinguishes between four different types of users, 
whose differences could be explained by three major techno-socio-economic factors: 
a) “trust stance” (e.g., “I usually trust a person until there is a reason not to”), b) “mo-
tivation to engage in trust-related seeking behaviour’”(e.g., ”I look for guarantees 
regarding confidentiality of the information that I provide”) and c) “trust-related com-
petences” (e.g., “I’m able to understand my rights and duties as described by the 
terms of the application provider”). More specifically, each user is clustered to one of 
the four identified segments, namely “High Trust” (HT), “Highly Active Trust Seek-
ing” (HATS), “Medium Active Trust Seeking” (MATS) and “Ambivalent” (A), 
which were found to have statistically significant differences. The personal attributes 
of users in each segment, affect not only their initial trust level, but also the way that 
this value is updated based on the experienced system outcomes. 

We now proceed with a formal definition of the computational model. Suppose 
that for each system 𝑠 there is a non-empty set 𝐻! of trustworthiness factors for which 
any trustor 𝑖 is interested in and let 𝑤!be its trustworthiness value for factor 𝑗. Exam-
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ples of trustworthiness metrics include availability, successful completion of transac-
tion, etc. For each factor 𝑗 the consumer has a personal opinion on how likely it is that 
the system will behave as expected. In other words every user has a subjective estima-
tion of the probability that the system will be available, will store transaction results, 
etc. This subjective opinion is called trust level and we formulate it by means of a 
Beta pdf. In a mathematical formulation, the trust level of a user 𝑖 for metric 𝑗 after 𝑛 
transactions, where 𝑘 were successful, is given by:   

𝜏!
! 𝑛 = !!!!∗!

!!!!∗!!!!!!∗(!!!)
 (5) 

More specifically, 𝑎! is a measure of the trustor’s confidence that the system will 
fulfil its objectives, 𝛽! is a measure of the trustor’s belief that the system will not 
meet its expectations while 𝛼,𝛽 are the two parameters that correspond to the effect 
of each system’s success or failure respectively on trust level. In the availability met-
ric for example, 𝑛 would represent the number of attempts and 𝑘 those were the sys-
tem was responding (even if the output was incorrect, intercepted by an eavesdropper, 
etc.). 

In [5], we describe and validate our approach for estimating those parameter values 
for each segment and consequently computing the trust levels. Notice that if 𝑎 = 𝛽, 
then we have the classic Beta pdf whose mean value is known to converge to the av-
erage trustworthiness level after a sufficiently high number of transactions. According 
to our analysis this property appears only for the “HATS” segment, which means that 
these users have an accurate estimation of trustworthiness. On the contrary, users in 
“HT” segment, whose attributes result into trustworthiness overestimation, place 
greater importance on a success compared to a failure (meaning that 𝑎 > 𝛽), while 
those in “MATS” and “A” segments underestimate the trustworthiness level ( 𝑎 < 𝛽).  

3.2 The dynamic programming model 

Suppose that the provider offers a single service plan to all interested buyers, 
which allows them to place a fixed number of 𝑛 transactions for an upfront payment 
𝑝!, or unit price 𝑝 = 𝑝! 𝑛. All candidate customers, being rational entities, will inves-
tigate whether they should engage with that provider, or not (the interested reader is 
redirected to [5] for a detailed decision criterion). If multiple providers exist in the 
market then obviously each customer would select the one that maximizes her ex-
pected net benefit. First-time buyers will have not experienced any system outcome 
before and thus their initial trust metrics (𝜏!

!(0)) would depend on their personality 
(e.g., predisposition) and any information that they can find in service description, or 
from their peers. For simplicity, in the following we will assume that a single binary 
trust metric 𝑗 is important for the system only and thus the overall trust at any time is 
given by 𝜏! = 𝜏!

!. 
Let us assume that a certain customer 𝑖 has found this service plan to be beneficial. 

After making the upfront payment, the customer answers a questionnaire that helps 
the provider to identify the trustor’s segment. This would allow the provider to use the 
trust computational model to compute the initial trust metrics. This value could be 



considered as a safe, minimum target for the overall trust (or respective trust metric in 
the general case) after 𝑛 transactions in order for the trustor to renew the business 
relationship. The rationale is that ceteris paribus the user’s decision would be positive 
if its trust level after 𝑛 transactions will not have decreased.  

The next step would be to compute 𝑘, the minimum number of successes necessary 
for reaching the initial trust level. Again, the complexity of this step can be signifi-
cantly reduced by relying on the mechanics of the trust computational model. More 
specifically the minimum number of successes can be computed by solving the fol-
lowing equation for  𝑘: 

 𝜏! 0 = !!!!∗!
!!!!∗!!!!!!∗(!!!)

  
𝐾 = !(!!!!!!!")

!!!(!!!)
 (6) 

The last step is to create a contingency plan for reaching the initial trust level in the 
most cost effective way, or abandon serving the customer as early as possible. This 
contingency plan would suggest to the provider the optimal level of system trustwor-
thiness at any possible situation. A situation is characterized by the tuple (number of 
successful transactions still necessary, number of transactions remaining). Obviously, 
such a contingency plan requires that the provider is able to make the necessary 
changes to system trustworthiness between two consecutive transactions. For exam-
ple, in case of a composite system the provider could replace a component with an-
other one and obtain the target trustworthiness value. In case of a monolithic system 
the trustworthiness could be affected by a different configuration. We should note that 
usually different system compositions, or configurations, entail a change in provider’s 
costs. Furthermore, we would expect that increasing a component’s trustworthiness is 
costly for its developer, e.g., a component’s cost in the market equilibrium is an in-
creasing function of trustworthiness.  

Thus, the provider has received 𝑝! monetary units in advance and knows the condi-
tions for securing that revenue stream in the future. Suppose that the provider can 
query an online application marketplace and find information about the trustworthi-
ness 𝑡! and cost 𝑐! of any component 𝑚 that is compatible with the rest system. At 
the beginning or at state (𝑘, 𝑛) she has 2 main options:  

1. Serve the customer and hope that will be trustworthy enough for getting an extra 
amount 𝑝! for the next set of transactions.  

2. Keep the money and do nothing. 

Depending on the trustworthiness level 𝑡!(𝑘, 𝑛) of the system 𝑠 chosen at state 
(𝑘, 𝑛) there are two cases: 

• With probability 𝑡! 𝑘, 𝑛  we go to state 𝑘 − 1, 𝑛 − 1  
• With probability 1 − 𝑡!(𝑘, 𝑛) we go to state (𝑘, 𝑛 − 1) 

The same options are valid at any later state apart from the following situations: 

•   (𝑘!, 𝑛!) where 𝑘! ≤ 0, 𝑛! > 0 and the provider has no incentive to keep placing 
effort, since effort is costly and would not further increase its future revenues. 



•   (𝑘!, 0) where 𝑘! ≥ 0 and the provider will have exhausted the number of at-
tempts before satisfying the customer. 

Thus, the run-time provider’s problem can be phrased as “what is the most cost-
effective trustworthiness level for the next transaction given the total number of trans-
actions remaining and the minimum number of successes required to meet the cus-
tomer’s expectations?”.  

Such a problem can be solved by employing a finite-stage dynamic programming 
model, like the one described in [4]. This contingency plan can be produced proac-
tively and be used by the provider to take any corrective actions deemed necessary at 
run-time. Note that the contingency plan suggests a trustworthiness level for the over-
all system. In the case of a composite service for example, the provider would have to 
replace a subcomponent with another one (or add a new) so that that the overall sys-
tem meets the new security level. This is not a trivial task, but the provider could rely 
on tools that allow estimating the end-to-end trustworthiness of a particular system 
composition, like the [6]. 

Similar to [4], let 𝑉!(𝑘) be the minimal expected cost incurred when the provider is 
at state (𝑘, 𝑛), which refers to the path on the tree shown in Figure 2 below with the 
minimum total remaining expected cost. Then the provider’s maximum expected 
profit 𝜋∗ is given by 𝜋∗ = 2𝑝! − 𝑉!(𝑘). The first term represents the maximum reve-
nues that the provider can receive in this 2-period setting, while the latter includes 
both the operating costs, as well as, any missed opportunities.  

Furthermore, assume that: 

• 𝑉! 𝑥 = 𝑝!, where 𝑥 > 0, which means that the provider misses the opportunity to 
renew the contract with the customer, and 

• 𝑉! 𝑥 = 0, where 𝑥 ≤ 0 and 𝑦 ≥ 0, which means that there is no “penalty” when 
the minimum number of successful transactions is met. 

Then, the Bellman optimality equation for this problem can be written as 
𝑉! 𝑘 = min

!!!!!!
𝑐 + 𝑡! 𝑘, 𝑛 𝑉!!! 𝑘 − 1 + 1 − 𝑡! 𝑘, 𝑛 𝑉!!! 𝑘  

where 𝑐 = 𝑐!!  is the total cost and we would expect that the provider considers 
system compositions/configurations whose total cost does not exceed the retail price. 

This dynamic programming model is equivalent to the one studied in [4]; the only 
difference being that there is no SLA between the two parties and thus the penalty 
refers to the missed opportunity for receiving another upfront payment. Since the 
upfront payment p! is fixed, the condition V! x + 2 − V! x + 1 ≥ V! x + 1 −
V! x  is still satisfied and the optimal policy that was found is still valid. Thus, in 
general, the contingency plan would instruct the provider to do the following:  

1. increase the TW the closer we get to contract's end and the minimum number of 
successful transactions was not reached. Furthermore, the higher the number of 
pending successful transactions the higher the increase of TW would be.  

2. decrease the TW as the number of pending transactions to reach a certain number 
of successful transactions increases. Furthermore, the higher the number of pend-
ing transactions the higher the decrease of TW would be. 



Note that this contingency plan could be used for finding the optimal design-time 
trustworthiness 𝑡!(𝑘, 𝑛) for that particular user, or segment in general. Furthermore, 
the provider would have to prepare one contingency plan for every trustworthiness 
metric 𝑗 ∈ 𝐻!. The computational complexity of producing such a contingency plan is 
𝑂(! !!!

!
𝑚 ), where 𝑛 is the number of transactions and 𝑚  is the number of candi-

date components. In order to see this remember that the dynamic programming prob-
lems inherently support recursion and thus the total number of states is given by a 
finite arithmetic series, 1 + 2 + 3 +⋯+ (𝑛 + 1) (as shown in Figure 2). Further-
more, in each state we have to compute 𝑚  expected costs in order to find the mini-
mal (assuming that 𝑚 = 1 refers to a dummy component representing the “do noth-
ing” strategy).  

3.3 An example 

Suppose for simplicity that the provider can manage system trustworthiness (secu-
rity) by replacing one component with another from the marketplace, while the rest 
components are proprietary. The following table presents the cost 𝑐! per transaction 
and the trustworthiness 𝑡! of each candidate component (again we focus on a single 
trustworthiness metric), where 𝑚 = 1 refers to a dummy component representing the 
“do nothing” strategy. 

Table 1. Candidate components 

Component 𝑚 1 2 3 4 5 
Cost 𝑐! 0 0.3 0.4 0.8 1.9 
Trustworthiness 𝑡! 0 0.54 0.6 0.8 0.85 

 
Furthermore let us assume that the offered service plan covers 4 transactions for an 

upfront payment of 3 monetary units; thus 𝑛 = 4 and 𝑝! = 3. If the customer, upon 
registration, had answered a questionnaire for revealing the trustor segment and it was 
found that she belongs to the “High Trust” segment, then her initial trust level would 
be 𝜏! 0 = !!

!!!!!
= !.!"##

!.!"##!!.!"#$
= 0.7571. Thus, in order for her trust level after 3 

transactions to be >=0.7571 the provider would have to succeed in at least 𝑘 =
2.35424 = 3 transactions, where k is given by equation (6) or more specifically: 

2.2144 + 0.9583 ∗ 𝑘
2.2144 + 0.9583 ∗ 𝑘 +   0.7106 + 0.4399 ∗ (4 − 𝑘)

= 0.7571
  
𝑘 = 2.35424 

Figure 2 presents the contingency plan that would be produced in this example. 
Solid lines represent the trustworthiness of the optimal component that should be 
selected, while the dashed line gives the transition probability to a state where the 
remaining number of successful transactions remains the same. Rectangles denote a 
final state and any missed revenues. Note that during the first two transactions the 
provider should employ 𝑚 = 2. Furthermore, at state (1,1) the provider would max-
imize its expected profits by using 𝑚 = 4 that has increased trustworthiness and cost. 



Finally, note that whenever the provider realizes that, either the minimum number of 
successful transactions cannot be met, or it has already been achieved, then the opti-
mal component is 𝑚 = 1 (doing so reduces costs without affecting future revenues).  

 
Fig. 2. An example of the contingency plan 

The maximum expected profit is 𝜋∗ = 2 ∗ 3 − 𝑉! 3 = 6 − 2.72028 = 3.277972. 
To see why this problem is not trivial, let us examine the following two extreme cas-
es. The first option of the provider would be to place no effort at all. In that case the 
provider’s expected profit during the two phases would be 𝜋 = 2 ∗ 3 − 𝑉! 3 = 6 −
3 = 3 (the upfront payment of the first phase, only). The other strategy would be to 
employ the most trustworthy component so that the customer will have observed the 
maximum number of successes and the probability of renewing the contract is max-
imized. However, 𝑐! is so high that the total expected cost is higher than the missed 
opportunities from further revenues; more specifically 𝜋 = 2 ∗ 3 − 𝑉! −1 = 6 −
3.99009 = 2.00991. 

4 Conclusions and Future Work 

In this paper we have provided strategies of trustworthiness management that, under 
certain assumptions, maximise the provider’s expected profits in presence of 
uncertainty regarding customers’ trustworthiness expectations. While in the first 
model we have assumed that the user’s patience is exponentially distributed, in the 
second model we have relied on knowledge about the effect of trustors’ properties on 
the trust dynamics. In the latter case we help service providers in producing an 



optimal contingency plan proactively and which allows them to keep the users’ trust 
level high enough so that their profits are maximized. 

In the future, we plan to extend the dynamic programming model in order to 
support contingency plans for systems that are not segment-specific. In this way, a 
provider will be able to manage a single system for all of its customers. 
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