
Fair Congestion Control for Long-lived Background

Flows

Costas Courcoubetis

Department of Engineering Systems and Design

Singapore University of Technology and Design

Singapore

costas@sutd.edu.sg

Antonis Dimakis, Michail Kanakakis

Department of Informatics

Athens University of Economics and Business

Athens, Greece

{dimakis, kanakakis}@aueb.gr

Abstract— We consider a new economic framework for

designing congestion control algorithms for long-lived

background flows. The algorithms aim at the fair sharing of the

network capacity left over by the much shorter (and usually more

interactive and delay sensitive) flows, between all competing

background flows even if some use TCP in particular. The

algorithm acts as a weighted variant of TCP with adaptive weight

adjustment based on an estimate of the average throughput that

would be obtained by a TCP flow following the same path, with

the resulting throughput behavior ranging from low priority to

that of TCP. It turns out that this design approximately maximizes

the social welfare for the background traffic for appropriately

defined utilities for bandwidth averaged over long time scales and

a social cost function reflecting the negative externalities on the

average download time of interactive flows, over all possible

protocol designs. We illustrate our approach by proposing two

concrete congestion control algorithms, each of them guaranteeing

the throughput of TCP in the case of resource scarcity or resource

abundance respectively. Two implementation alternatives are

explored; one based on adjusting the congestion window ramp up

speed and another based on alternating transmitting and idle

periods. We use both analysis and simulations to validate our

approach of implementing new background transfer protocols.

I. INTRODUCTION

A key element of the success of the internet architecture is

the ability to accommodate the needs of very diverse

applications. Even though connection rates differ by few orders

of magnitude and file transfer sizes vary by more than ten orders

of magnitude the transport layer is pre-dominantly based on

TCP and its variants. Recently however the widespread use of

certain applications such as peer-to-peer file sharing and video

streaming has not only challenged TCP but also the end-to-end

principle. For example many internet service providers (ISPs)

violate this principle by throttling file-sharing traffic using deep

packet inspection at their equipment [1]. Commonly the

throttling is applied during peak hours and file-sharing users are

let free during off peak hours such as the nighttime. From an

economic viewpoint heavy file-sharing usage during peak-time

causes high social costs because of longer download times

experienced by other users using the network at the same time.

This cost is especially high to users performing interactive tasks

such as web browsing, database transactions and video

streaming. We should note here that (the majority of) file-

sharing users are not malevolent; it is just that the transport

generic protocols they use –most often TCP- is not designed to

differentiate between peak and off-peak hours. Many file-

sharing users –as they perform a mostly non-interactive task-

would be equally happy if their downloads were shifted during

off-peak hours. Thus while other more fair bandwidth sharing

patterns are possible, the use of TCP by file-sharers makes

unfair outcomes persist.

Recognizing this, specialized congestion control algorithms

for background, i.e., non-interactive, data transfers have

recently emerged, e.g., LEDBAT [2] [3], TCP-LP [4] and TCP

Nice [5]. Such protocols –called also Lower than Best Effort

(LBE) protocols- are typically designed to behave as low

priority traffic, i.e., they are designed to cause low social costs

due to download delays. However when they coexist with long-

lasting flows which use non-LBE protocols, e.g., TCP, their

throughput is severely decreased for a long time period. Such

bandwidth starvation effects are a serious consideration in the

design of LBE protocols [6]. This unfair bandwidth sharing

pattern between non-LBE and LBE protocols, especially if both

carry long flows- is manifested in weakened incentives for

adoption of such new protocols instead of the incumbent TCP

in public environments. Thus LBE protocols as opposed to TCP

favor low costs due to delays but at a significant throughput

degradation. Note also that in certain topologies with multiple

bottlenecks LBE protocols might both obtain low throughput

and impose higher delay costs. (See Section IV.B.)

Thus the incumbent TCP, and LBE protocols seem to

represent two extreme operating points: TCP obtains higher

throughputs at the expense of higher social costs while LBE

protocols favor the latter but suffer from the point of view of

throughput. We believe that the unfairness in the bandwidth

sharing patterns is the cause of the engineering and economic

issues present in each case. Furthermore, as we show in this

paper, these problems can be attacked at the same time by

exploring other more fair operating points within the two

extremes. In this paper we build on the economic model and the

two basic theoretical algorithms in [7], and design congestion

control mechanisms implementing the algorithms. Our aim is

to explore the issues involved in their design as well as to

evaluate the quality of the resulting operating points from a

fairness perspective.

We characterize fairness in terms of a social welfare

maximization problem involving utilities for the background

flow users attached to their long-term average throughputs, and

with a social cost accounting for the delay impact on short

interactive flows. A basic feature of this approach –which

makes it different from the ones based on Kelly’s utility

maximization- is that the utilities here model the demand for

long-term throughput as a function of the marginal delay-based

cost. Thus the demand does not depend on the instantaneous

marginal resource price –as in Kelly-like models [9][10]-,

which in general depends on other factors except delay, such as

the link characteristics, the detailed behavior of the competing

flows etc. This is important in the congestion controller design

stage for setting the response based on fairness objectives which

do not depend on such detailed characteristics that cannot be

known at that time.

The paper is organized as follows. The basic notation and

the social welfare maximization problem introduced in [7]

which motivates the work here is presented in Section II. In

Section III two congestion control algorithms are described as

well as the main functional building blocks. In Section IV we

present simulation results of the two algorithms in a single-link

and two-link topologies and compare with TCP and LBE

protocols. Finally we conclude in Section V.

II. MOTIVATION

In this section we motivate our algorithm by considering a

model of a single bottleneck link. We emphasize that the

algorithm itself does not depend on any assumption of a single

bottleneck; it is in this case though that the algorithm possesses

an optimality property.

Consider a link of capacity shared by long-lived

background flows, where of these use TCP and are out of our

control while the rest will use our congestion control algorithm.

If the link also carries a stream of dynamically arriving and

departing short-lived flows with average throughput , then

there is bandwidth up for grabs for the background

flows. We seek to optimize the bandwidth sharing policies used

by the non-TCP flows, called FAIRBAT (fair background

traffic) flows hereafter for using our proposed algorithm, such

that the leftover capacity is allocated fairly between all

background flows including TCP ones. Furthermore, the fair

allocation should take into account the impact on the download

delays of the interactive flows. This leads to the social welfare

maximization problem

 (1)

such that over ,

where:

· is the average throughput achieved by the TCP

and -th FB flow respectively.

· is the utility function of TCP and the -th FB

flow respectively. The utilities intend to model users’

1 To avoid confusion we emphasize the distinction between our model and the

Kelly-based utility framework [9]; the latter models the instantaneous

long-term average throughput response to marginal

delay cost externalities1.

· is any nonnegative, non-increasing function, and

· is a normalized measure of the delay impact on

the interactive flows when the FB flows obtain

average throughput. (See below.)

The cost term reflects the externality imposed on the

download delay of interactive users and caused by background

downloads. It is important to note that the delay depends also2

on the instantaneous bandwidth allocations which result from

the particular congestion control mechanism used by each FB

flow. Let be the average download delay caused by a

particular mechanism when the FB flows obtain an aggregate

throughput equal to measured on a sufficiently long timescale

such that the effect of short flows’ dynamics is averaged out.

Let also be the average download delay if no background

flows existed in the link, i.e., . Then the delay impact

 is defined as

where s is the average flow size. Since depends on the

particular congestion control used by each FB flow, the

optimization in (1) is performed over all such possible

mechanisms in addition to the average throughputs .

It is important to note that we do not change TCP; we are

optimizing the way FB flows behave with TCP’s behavior taken

as given. Since all TCP flows behave in the same way, we are

justified in assuming that these flows possess the same utility

.

Theorem 4 in [7] shows that if the search for a congestion

control mechanism is restricted to weighted versions of TCP,

i.e., flows which obtain a fixed proportion of TCP’s throughput

at any point in time –not just in the average sense- then the

social welfare is nearly maximized for an appropriate choice of

the proportion (also called weight) by each FB flow . The

relative difference between the social welfare obtained in this

way and the optimal one vanishes as increases. More

importantly, the gradient projection of the social welfare along

the direction, , can be

computed on the basis of local information by the -th FB flow

because for weighed TCP one has (see [7]) and

. Hence one is led to consider the gradient

projection-based weight adaptation algorithm

(2)

where is the average throughput resulting from the

application of TCP weights during the time

period of constant length between iterations and . The

step gain controls the speed of convergence and is such that

bandwidth share response on network congestion signals such as packet drops

or packet delay.
2 It also depends on the interactive flow arrival and size statistics.

the adaptation speed is sufficiently3 slow, i.e., the adaptation

timescale is long.

 Notice that for performing the update (2) each FB needs to

know . While this is not unreasonable since TCP’s behavior

is well-known, in this paper we plan using the social welfare

maximization (1) as a device for generating new congestion

control algorithms for particular choices of and by the

algorithm designer. In what follows we consider the effect of

two such choices which give rise to two different algorithms,

FAIRBAT-I and FAIRBAT-II.

If for every then all background

flows would have gotten an equal share of if the cost

term in (1) was neglected. The latter term shifts the balance

towards allocations which hurt the interactive flows’ delay less.

If we further assume a delay cost with for every

, where is a constant, then at the equilibrium of (2),

 (3)

holds for all .

The implied equilibrium allocation is rather simple and

intuitive: at highly congested links where is small, the FB

flow gets a proportionally small amount relative to . At

lightly loaded links where is large, the FB flow gets nearly

as much as TCP since then. Of course such a behavior

is sensible not only in single bottleneck links but also in

multiple bottlenecks. However in the latter case

 and the update (2) does not necessarily (approximately)

maximizes social welfare. Still the resulting allocations could

be desirable as shown in the example in Section IV.B. The

viability and performance of such an algorithm, called

FAIRBAT-I, or FB-I, is the object of study in the next sections.

Other equilibrium behaviors can be effected for different

choices of utility functions and/or , leading to different

algorithms. A particular such choice arises when are

as above and for every , i.e., a constant. Here, the

equilibrium allocation is characterized by the relation

 (4)

 The rationale behind such allocation is that at lightly

congested links where bandwidth is abundant and so is large,

a user of a background flow might be already satisfied with the

throughput she gets and not want to compete with TCP for more

bandwidth; on the other hand, at highly congested links the user

might want to ensure that she achieves at least the throughput

that TCP does. Such a behavior makes sense for rational users

who would accept to use a transport protocol other than TCP

only if they benefit from doing so, i.e., achieve a higher average

throughput. An algorithm, called FAIRBAT-II, or FB-II, which

implements such a protocol will be dealt with in the next

sections.

3 Sufficiently slow for accurate estimates of the average throughput to be

available.

III. FAIRBAT ALGORITHMS

As stated in the previous section, the algorithm aims at

reaching an equilibrium where the average throughput of a

FB flow satisfies (3) or (4) with respect to the average

throughput of a fictitious TCP flow following the same path.

Moreover it should achieve this by using weighted TCP at every

time; otherwise and (2) fails to maximize (1)

in single-link bottlenecks.

Fig. 1. The functional blocks of the algorithm interact in a fast control loop

(horizontally) between a weighted TCP congestion controller and the network.
The TCP weight is adapted in a slower control loop (vertically).

The algorithm can be thought of as being composed by three

separate functional blocks depicted in Fig. 1:

1. A weighted TCP congestion control algorithm which

given any weight it tries to maintain a congestion

window size equal to times the congestion window

of a fictitious TCP flow following the same path and

facing the same loss events.

2. An estimator of the average throughput resulting

over a long time period during which the weight is

kept fixed. This is needed in order to estimate the effect

of choosing weight .

3. After the effect of is estimated with sufficient

accuracy, the weight adaptation step calculates the new

weight value by (2) to be used during the -th

iteration.

Thus there are two control loops operating on different

timescales. At a fast timescale typically of the order of a few

round-trip times, the congestion window controlled by

weighted TCP reaches a stochastic equilibrium. The throughput

obtained by a FB (or any) flow is constantly modulated by the

changing number of short-lived flows sharing part of the

bottleneck links on the flow’s path. Hence the estimator needs

to filter out any throughput fluctuations at least as fast as the

timescale of short-lived flow dynamics, and so the estimator’s

memory should be set on the order of tens of seconds or

minutes. Choosing a longer memory will lead to a needlessly

slow converging estimate and because of this the weight

adaptation will need to be slowed down as well. Thus the weight

adaptation control loop ideally should be as slow as the short-

lived flow dynamics.

In the next paragraphs we describe the implementation of

each functional component in Fig. 1.

A. Weighted TCP through modifying TCP AIMD: -TCP

The idea is to modify the TCP Additive Increase

Multiplicative Decrease (AIMD) dynamics to obtain a

throughput proportional to (unchanged) TCP. More

specifically, the congestion window increment on each

acknowledgement receipt is (where in general

). In [8] it is shown that the throughput is proportional to

and so should be used if one wishes to enforce a

weight . Since both algorithms in Section II use we

will assume . If during the -th iteration the weight

update algorithm uses the weight then the increment

 is used, and the congestion control algorithm

(henceforth called -TCP) responds to congestion signals

according to:

This implementation performs with satisfactory accuracy on

Random Early Detection (RED) buffers, for a wide range of

values for the system parameters. Under the drop-tail policy this

is no longer the case and unpredictable outcomes may occur,

where -TCP flows obtain higher throughput than TCP even

though their weight is well below 1. In Fig. 2, we show the

congestion window evolution of the two protocols competing

on a single link. On the left-side of the figure where the

congestion window evolutions under RED is shown, both

follow a typical saw-tooth pattern and the FB flow correctly

obtains a portion of TCP’s throughput. On the other hand, under

drop-tail the FB flow faces fewer multiplicative decrease events

than TCP, meaning that it faces a lower loss rate.

Fig. 2. The background flows congestion window evolution in time: Fig. 2a

depicts the RED queue case, where both FB and TCP flows face equal dropping
probability. At the drop-tail queue (Fig. 2b) TCP performs more window

decrease events (higher loss rate), resulting to incorrect capacity sharing
between flows.

4 corresponds to regular TCP.

This paradoxical behavior is well known (e.g., see [11]) and

is due to phase-type effects arising by differences in the TCP

gain. The effects insists appearing even when we inject (using

the “overhead” parameter in ns-2 [12]) small random spaces of

the order of tens of milliseconds between transmissions of

consecutive packets and is not an artefact of the simulator.

Typically the effects tends to disappear in large aggregation

points where the synchronization breaks because of the

randomness in packet transmissions arising due to the high

number of flows. Since we cannot a priori rule out such phase-

type effects, we next describe a different implementation which

intends to emulate weighted TCP over long timescales and

avoids these effects.

B. Weighted TCP through transmitting for only a portion of

time: τ-TCP

Contrary to the approach in the previous paragraph where

we control the instantaneous flow “aggressiveness”, the main

idea here is to keep the AIMD dynamics unchanged –so phase-

type effects as in -TCP will not occur- but let FB transmit only

for a portion of time. The lifetime of each individual FB flow is

divided into periods each consisting of two phases with a

constant and a random duration denoted as and ,

respectively. should be set to be sufficiently larger than a

Round Trip Time (RTT) in order for the TCP flows sharing the

same links to reach equilibrium throughputs within that time.

The purpose of the random second phase is to break any

potential synchronization between different FB flows. Let

 be the total duration of such a period, then each FB

flow becomes active and transmits for time , while it

remains silent without sending any data for , where

is a supplied parameter. Thus, the average throughput obtained

over many periods is approximately the portion of what a

constantly transmitting TCP would obtain. Hence if the weight

update algorithm wants to apply weight during the -th

iteration then should be set equal to .

Even though -TCP emulates weighted TCP over long

timescales it is not clear if the delay impact is close to that of

the latter. The delay caused by -TCP flows could potentially

be much larger than that caused by weighted TCP for the same

long-term average throughput. This will entail higher delay

costs in (1) and the social welfare could decrease. The next

theorem shows that the relative delay decrease if weighted TCP

is used in place of -TCP is no more than approximately 17.3%

in the worst case. We note also that the upper bound 17.3% is

tight. Recall the definition of in Section II for a

congestion control mechanism used by the FB flows where

-TCP, -TCP . Consider the case of a single link of

capacity where FB flows coexist with background TCP

flows and a Poisson arrival stream of short TCP flows each

associated with the download of an exponentially distributed

random file size such that the imposed load is . In this

system the FB flows could attain any amount of throughput

between 0 and . The following theorem holds whose

proof is relegated to the Appendix:

On packet acknowledgement:

On packet loss:

Theorem 1: For any the following

is true:

where and .

 For Theorem 1 yields the upper bound

Combining this with the (tight) upper bound

of relative delay decrease between weighted TCP and the

theoretically optimal algorithm (see [7]), yields (the not tight)

34.5% worst case bound for the difference between -TCP and

the optimal. Using the variational formula for the upper bound

as well as the numerically obtained bounds in [7] one can easily

show that 30.5% is a (tight) lower bound for the worst case

difference when . For k=2 the bound given by

Theorem 1 is even lower.

C. Average Throughput Estimator

The goal of the estimator is to track the average throughput
of the controlled flow on a timescale where fluctuations due to
short flow session dynamics are averaged out. On every iteration
just before the weight update, the moving average estimate
is updated according to

 (5)

where is the data rate over the period after the last update
only. The gain parameter is appropriately set in order for the
estimator memory (which is of the order of) to be at least
as large as the timescale of short flow dynamics. Choosing a
much higher value will lead to excessively slow convergence of
the estimates.

 As explained in Section II, under -TCP no estimator for
is necessary since and this fact allowed a weight
update (2) requiring only local information. There is a subtle but
intrinsic reason why this is not possible under -TCP: during
inactive phases a competing TCP flow gets a higher bandwidth
share than during active phases, so , i.e., is
underestimating . In large links however where many flows
coexist, the phase has a negligible effect on the bandwidth share
of a TCP flow, and so is not (significantly) underestimated.

 Moreover in -TCP during inactive periods the rate is 0 so
the convergence of the estimate can be accelerated if inactive
phases are taken a priori into account and not use the plain
moving average update (5). In particular we use (5) only during
active phases in order to get an estimate of (which
underestimates the true as explained) and then let .
The estimate used in the weight update algorithms below is
obtained in this manner, when -TCP is used.

D. Weight Adaptation

The weight of FB flow is updated according to (2)
using the estimated values of . In particular, the first
algorithm in Section II, FB-I, uses the weight update

which results, if , , as

assumed in motivating FB-I in Section II. If we use

instead, we get the update step for our second algorithm:

IV. SIMULATION RESULTS

In this section, we present the results of the simulation

experiments performed in ns-2 [12]. Our aim is to assess the

conformance of algorithms FB-I and II to the respective notions

of fairness (for both - and -TCP), (3) and (4), and to measure

their impact on the download delays of short flows. Further we

compare with alternative congestion control protocols used by

the background flows, such as TCP (Reno), LEDBAT [2] [3],

and TCP-LP [4].

In what follows, the short flows follow a Poisson arrival

process. Each such flow is associated with the transmission of

a finite, exponentially distributed file size with mean 3Mbytes.

In Subsection IV.A we consider a single bottleneck uplink with

capacity Mbps, and in IV.B a sequence of two links of

the same capacity. In the former case, RED is applied at the link

buffer so that - TCP and -TCP can both be compared. (Recall

that under drop-tail, -TCP may behave erratically because of

phase effects.) In the two-link case, we consider the drop-tail

policy so that a comparative analysis between -TCP and

LEDBAT is possible since the latter was designed to work with

the drop-tail policy [2].

A. Single link topology

Here the web flows arrive at rate flows/sec implying a

link load leaving up to Mbps

available for the background flows. In Fig. 3Fig. 3 we illustrate

the average throughput obtained by FB flows by considering

the (average of their) weight at equilibrium as more FB flows

share the link. (A unit weight corresponds to the average

throughput obtained by competing TCP background flows.)

Each curve corresponds to a particular choice of algorithm (FB-

I/II, -TCP or -TCP) and to a particular number of coexisting

TCP background flows. The curves marked with “theory”

depict the values obtained from (3) or (4). Fig. 3a, which

concerns the results of FB-I, shows that as the number of

background flows and hence the average delay of the short

flows increases, each FB flow obtains a smaller share compared

to TCP, as required by (3). The converse happens in Fig. 3b as

described in (4); the more congested the link becomes, the more

similar to TCP the FB flows behave. -TCP seems to

FAIRBAT-I:

FAIRBAT-II:

consistently underestimate the theoretically optimum FB flow

throughput and favor TCP. This may be due to the intrinsic

underestimation of TCP throughput discussed in III.C, which

agrees also with the fact that the amount of underestimation is

less in links with more flows.

Fig. 3. FB weight at equilibrium: As more background flows enter

the network and the importance of delay increases, FB-I trades throughput for
lower delay impact on the short flows (Fig. 3a). Contrariwise, in more

competitive environments FB-II increases its weight to satisfy the objective for

TCP-like throughput under high congestion (Fig. 3b).

In Fig. 4 we depict the delay of short flows caused by the

coexistence with background ones. We do not show separate

curves for -TCP, -TCP and “theory” because they are

practically identical. For comparison, we plot also the delay

caused if the background flows used all TCP. Under FB-I (see

Fig. 4a) the delay impact is significantly reduced relative to

TCP as the link becomes more congested. This is the case also

for FB-II (see Fig. 4b) in light congestion where each additional

background flow has a decreasing marginal effect. At higher

congestion the marginal increase of delay follows that of TCP.

Fig. 4. The impact on the download delay of web traffic: Under TCP

background flows the marginal impact is constant as more background flows

are added. The marginal impact of FB flows is varying depending on the level

of congestion. FB-I and FB-II behave oppositely.

Next, we consider how accurately each of the FB-I and FB-

II algorithms approximates the maximum social welfare for the

respective definition of cost. To do this we check how close the

gradient of the objective function in (1) is to being zero. For

FB-I this corresponds to checking how accurately the equations

 (6)

for are satisfied, where is the delay impact. The

reason we do not use (3) instead is that it is equivalent to (6)

only when . This fact holds under an ideal weighted

TCP algorithm, so since -TCP and -TCP are only

approximations we check (6) directly. This does not pose any

problem for FB-II since the associated objective function is

independent of , and so we use (4). Note also that are

obtained by directly estimating the average throughput of TCP

and FB respectively.

In Fig. 5 we plot the left and right-hand sides of both (6) and

(4) for , and . Fig. 5a shows

the relevant plots for -TCP while those for -TCP are shown

in Fig. 5b. Observe that -TCP closely satisfies (6), while -

TCP deviates significantly at higher values of . This deviation

is not because fails to equal (since as

shown in Fig. 5b) but because -TCP underestimates as

explained in III.C. Interestingly, significant deviations are

observed for FB-I only.

Fig. 5. Check of equality of left and right-hand sides of the optimality conditions

(6), (4) for FB-I and FB-II algorithms, respectively. The case of -TCP is

shown on the left figure while -TCP is on the right. There is a noticeable
deviation from optimality in the latter case for FB-I.

B. A two-link topology with indirect effects

As demonstrated in the last section, FB-I and FB-II allocate

bandwidth between background flows such the social welfare

(1) is approximately maximized. After all, their design was

motivated from that problem. The problem though concerns a

single link and FB-I/II cannot maximize social welfare in

general multiple link networks as an example in a two-link

topology depicted in Fig. 6 suggests.

In this section, we investigate the case where the

background flows and the web traffic do not share a common

link but the latter are only indirectly affected by the FB flows

through the background TCP that go through both links.

In this topology the more bandwidth is consumed by the FB

flows in the first link, the better the delay of the short flows at

the second link will be. This is because the TCP background

flows will leave more space at the second link, as they are

squeezed more in the first. Thus the externalities caused to the

short flows by the FB ones are positive. Hence the cost term in

(1) should reflect these positive externalities. However the

formula which is justified as an approximation of the

delay impact in the single link case cannot hold in our case since

it models negative externalities only: according to the formula

a higher should improve the delay when in reality it has the

opposite effect.

Fig. 6. A two-link topology with the FB flows indirectly affecting the stream

of short flows (with load) utilizing only the second link. The two links are

coupled because of the TCP background flows which use both links. Here the
FB flows cause positive externalities to the short flows.

So is e.g., FB-I a sensible algorithm for background flows

in this scenario? Notice that an optimal weighted TCP

algorithm would have to use weights always greater than 1,

aiming to achieve the positive externalities. Any congestion

control algorithm less aggressive than TCP will not be social

welfare maximizing. In particular this is true for LBE

algorithms such as LEDBAT, TCP-Nice, TCP-LP. In fact in

topologies as in Fig. 6Fig. 6, existing LBE protocols will not

only achieve lower throughput than FB-I/II but will also cause

greater delays to the short flows since the background TCP

flows are not going to be sufficiently squeezed.

To quantify the magnitude of these effects we consider

scenarios where the background flows, which traverse the first

link only, all use either LEDBAT, TCP-LP, or TCP and

compare with FB-I/II. We us the ns-2 implementation of

LEDBAT available in [13], while for TCP-LP we use the one

provided in ns-2. (In all cases the default parameters were used.)

The number of background TCP flows k=10 is constant and the

web flows arrive at a rate of 1/12, flows/sec, resulting to load

. The number of background flows varies in

different experiments from 10 to 30.

In Fig. 7 we present the aggregate throughput obtained by

the LBE protocols and FB-I/II normalized by the aggregate

throughput obtained by the same flows when they use TCP.

As expected, the background flows get the highest throughput

when they use TCP. The FB-I/II flow throughput is much closer

to TCP than to the LBE flows. Nevertheless Fig. 8 shows that

the delays caused by FB-I/II (when normalized by the delays

caused by TCP) are much lower than those of LBE and close to

those under TCP.

It is also interesting to note the effect of the cost coefficient

. While by (3) a lower value of yields a more aggressive

protocol (see difference between and in Fig. 7),

Fig. 7. The throughput achieved by each of the background flows in Fig.6
under different protocols. (The throughput is normalized by that when the

flows use TCP.)

the presence of positive externalities in this topology cause the

delay of short flows to decrease, as shown in Fig. 8b.

Fig. 8. The delay caused to the short (web) flows when the background flows
in Fig. 6 use different protocols. (The delay is normalized by the one caused

when TCP is used.) In 8b the delay caused by FB is shown more closely: more

aggressive flows () cause lower delays.

In other multiple link topologies positive and negative

externalities can act at the same time. We expect that the

throughput and delay impact performance of FB-I/II will

always lie in between that of LBE protocols and TCP, without

being clear which of the latter two is the best or worst. As shown

in the single link and the two link example of this section, more

satisfactory operating points seem to exist between the

extremes offered by TCP and LBE protocols and are achievable

the FB algorithms.

V. CONCLUDING REMARKS

 The nearly identical performance of - and -TCP shown in

Fig. 3 and 4Fig. 3 is remarkable and suggests that even though

the delay they cause may differ up to for the same FB

throughput, a small drop in throughput (which implies a small

drop in utility) leads to large delay savings. Of course the exact

significance of such a change depends on the precise utilities

and cost functions but we believe that trading off average

throughput for delay is far more effective than employing

intricate congestion control mechanisms. Thus the

instantaneous bandwidth sharing patterns seem to be

unimportant insofar as the long-term throughput remains

unchanged. This observation further justifies the approach

taken in this paper and [7], i.e., that of considering the problem

of allocation of the leftover capacity as logically separate from

the problem of instantaneous bandwidth sharing dealt in [9].

APPENDIX

In this section we obtain the proof of Theorem 1. Let be

the worst case relative delay decrease, i.e., the left-hand side of

the inequality in Theorem 1, under background TCP and FB

flows. We first derive a formula for .

Since the active phases of the -TCP flows are not

synchronized, the equilibrium number of active flows is

binomially distributed with “success” probability . This

probability satisfies , where z is the aggregate

average throughput obtained by all FB flows, and we call

 the share of leftover capacity obtain by the FB flows.

From the analysis in [7] we know that in a link with

background TCP (and no FB) flows the resulting average

number of short flows is . Since the

active phases of the -TCP flows are much longer than the

timescale of the short flow dynamics, the last formula gives the

average number of short flows during periods of time where

-TCP flows are active. Thus the overall average number of

short flows is . Using the analysis of

weighted TCP from [7] we get the formula

Lemma 1: is increasing in and so where

.

Proof: It suffices to show that is increasing in . Let be a

binomial random variable for trials with

success probability such that , i.e., .

Then it is straightforward to check that the ratio of the

(binomial) densities of over that of is unimodal in

 and that is neither stochastically greater nor less

than . These two conditions and the fact that

imply that is less than in the convex order from Theorem

3.A.53 in [14]. This in turn implies . Now

under FB flows the active flows obtain the same

share , i.e., , and so

. Since concern the same number

of trials their means must be ordered according to ,

i.e., . If the limit was

infinite then which contradicts our

assumption, so and hold. QED

Since exists (see proof of last Lemma), the

distributions of converge to a Poisson with rate and so

can be expressed alternatively as

where for a rate Poisson random variable.

Lemma 2: for every , and

 .

Proof:

To show the second part notice that

and . Both the equation and the boundary

condition are satisfied for which

hence is the unique solution. QED

REFERENCES

[1] Max Planck Institute (March 18, 2008). “Glasnost: Results from tests for
BitTorrent traffic blocking”. [Online]. http://broadband.mpi-
sws.org/transparency/results/ Retrieved April 3, 2011.

[2] Shalunov, Stanislav, Greg Hazel, Janardhan Iyengar, and Mirja
Kuehlewind. "Low extra delay background transport (LEDBAT)." draft-
ietf-ledbat-congestion-04. txt (2010).

[3] Rossi, Dario, Claudio Testa, Silvio Valenti, and Luca Muscariello.
"LEDBAT: the new BitTorrent congestion control protocol." In Computer
Communications and Networks (ICCCN), 2010 Proceedings of 19th
International Conference on, pp. 1-6. IEEE, 2010.

[4] Kuzmanovic, Aleksandar, and Edward W. Knightly. "TCP-LP: low-
priority service via end-point congestion control." Networking,
IEEE/ACM Transactions on 14, no. 4 (2006): 739-752.

[5] Venkataramani, Arun, Ravi Kokku, and Mike Dahlin. "TCP Nice: A
mechanism for background transfers." ACM SIGOPS Operating Systems
Review 36, no. SI (2002): 329-343.

[6] Carofiglio, Giovanna, Luca Muscariello, Dario Rossi, and Claudio Testa.
"A hands-on assessment of transport protocols with lower than best effort
priority." In Local Computer Networks (LCN), 2010 IEEE 35th
Conference on, pp. 8-15. IEEE, 2010.

[7] Courcoubetis Costas, and Antonis Dimakis. "Fair background data
transfers of minimal delay impact." In INFOCOM, 2012 Proceedings
IEEE, pp. 1053-1061. IEEE, 2012.

[8] Yang, Y.R. and Lam, S.S. “General AIMD congestion control.” In
Proceedings of the 2000 International Conference on Network Protocols,
2000.

[9] Frank Kelly. “Charging and Rate Control for Elastic Network Traffic.”
European Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37,
Jan. 1997.

[10] P. Key, L. Massoulie, and M. Vojnovic, “Farsighted users harness
network time-diversity,” in INFOCOM 2005. Proceedings IEEE, vol. 4,
2005, pp. 2383–2394.

[11] Sally Floyd and Van Jacobson. “Traffic phase effects in packet-switched
gateways.” ACM SIGCOMM Computer Communication Review, vol.
21, no. 2, pp. 26-42, April 1991.

[12] The Network Simulator ns-2. [Online]: http://www.isi.edu/nsnam/ns/

[13] Dario Rossi:: Software /Ledbat [Online] Available: http://perso.telecom-
paristech.fr/~drossi/index.php?n=Software.LEDBAT

[14] Shaked, M. and Shanthikumar, J.G. Stochastc Orders, Springer Series in
Statistics, Springer, NY,2007.

