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Abstract— We consider a new economic framework for 

designing congestion control algorithms for long-lived 

background flows. The algorithms aim at the fair sharing of the 

network capacity left over by the much shorter (and usually more 

interactive and delay sensitive) flows, between all competing 

background flows even if some use TCP in particular. The 

algorithm acts as a weighted variant of TCP with adaptive weight 

adjustment based on an estimate of the average throughput that 

would be obtained by a TCP flow following the same path, with 

the resulting throughput behavior ranging from low priority to 

that of TCP. It turns out that this design approximately maximizes 

the social welfare for the background traffic for appropriately 

defined utilities for bandwidth averaged over long time scales and 

a social cost function reflecting the negative externalities on the 

average download time of interactive flows, over all possible 

protocol designs. We illustrate our approach by proposing two 

concrete congestion control algorithms, each of them guaranteeing 

the throughput of TCP in the case of resource scarcity or resource 

abundance respectively. Two implementation alternatives are 

explored; one based on adjusting the congestion window ramp up 

speed and another based on alternating transmitting and idle 

periods. We use both analysis and simulations to validate our 

approach of implementing new background transfer protocols. 

I.  INTRODUCTION  

A key element of the success of the internet architecture is 

the ability to accommodate the needs of very diverse 

applications. Even though connection rates differ by few orders 

of magnitude and file transfer sizes vary by more than ten orders 

of magnitude the transport layer is pre-dominantly based on 

TCP and its variants. Recently however the widespread use of 

certain applications such as peer-to-peer file sharing and video 

streaming has not only challenged TCP but also the end-to-end 

principle. For example many internet service providers (ISPs) 

violate this principle by throttling file-sharing traffic using deep 

packet inspection at their equipment [1]. Commonly the 

throttling is applied during peak hours and file-sharing users are 

let free during off peak hours such as the nighttime. From an 

economic viewpoint heavy file-sharing usage during peak-time 

causes high social costs because of longer download times 

experienced by other users using the network at the same time. 

This cost is especially high to users performing interactive tasks 

such as web browsing, database transactions and video 

streaming. We should note here that (the majority of) file-

sharing users are not malevolent; it is just that the transport 

generic protocols they use –most often TCP- is not designed to 

differentiate between peak and off-peak hours. Many file-

sharing users –as they perform a mostly non-interactive task- 

would be equally happy if their downloads were shifted during 

off-peak hours. Thus while other more fair bandwidth sharing 

patterns are possible, the use of TCP by file-sharers makes 

unfair outcomes persist. 

Recognizing this, specialized congestion control algorithms 

for background, i.e., non-interactive, data transfers have 

recently emerged, e.g., LEDBAT [2] [3], TCP-LP [4] and TCP 

Nice [5]. Such protocols –called also Lower than Best Effort 

(LBE) protocols- are typically designed to behave as low 

priority traffic, i.e., they are designed to cause low social costs 

due to download delays. However when they coexist with long-

lasting flows which use non-LBE protocols, e.g., TCP, their 

throughput is severely decreased for a long time period. Such 

bandwidth starvation effects are a serious consideration in the 

design of LBE protocols [6]. This unfair bandwidth sharing 

pattern between non-LBE and LBE protocols, especially if both 

carry long flows- is manifested in weakened incentives for 

adoption of such new protocols instead of the incumbent TCP 

in public environments. Thus LBE protocols as opposed to TCP 

favor low costs due to delays but at a significant throughput 

degradation. Note also that in certain topologies with multiple 

bottlenecks LBE protocols might both obtain low throughput 

and impose higher delay costs. (See Section IV.B.) 

Thus the incumbent TCP, and LBE protocols seem to 

represent two extreme operating points: TCP obtains higher 

throughputs at the expense of higher social costs while LBE 

protocols favor the latter but suffer from the point of view of 

throughput. We believe that the unfairness in the bandwidth 

sharing patterns is the cause of the engineering and economic 

issues present in each case. Furthermore, as we show in this 

paper, these problems can be attacked at the same time by 

exploring other more fair operating points within the two 

extremes. In this paper we build on the economic model and the 

two basic theoretical algorithms in [7], and design congestion 

control mechanisms implementing the algorithms. Our aim is 

to explore the issues involved in their design as well as to 

evaluate the quality of the resulting operating points from a 

fairness perspective. 

We characterize fairness in terms of a social welfare 

maximization problem involving utilities for the background 

flow users attached to their long-term average throughputs, and 



with a social cost accounting for the delay impact on short 

interactive flows. A basic feature of this approach –which 

makes it different from the ones based on Kelly’s utility 

maximization- is that the utilities here model the demand for 

long-term throughput as a function of the marginal delay-based 

cost. Thus the demand does not depend on the instantaneous 

marginal resource price –as in Kelly-like models [9][10]-, 

which in general depends on other factors except delay, such as 

the link characteristics, the detailed behavior of the competing 

flows etc. This is important in the congestion controller design 

stage for setting the response based on fairness objectives which 

do not depend on such detailed characteristics that cannot be 

known at that time. 

The paper is organized as follows. The basic notation and 

the social welfare maximization problem introduced in [7] 

which motivates the work here is presented in Section II. In 

Section III two congestion control algorithms are described as 

well as the main functional building blocks. In Section IV we 

present simulation results of the two algorithms in a single-link 

and two-link topologies and compare with TCP and LBE 

protocols. Finally we conclude in Section V. 

II. MOTIVATION 

In this section we motivate our algorithm by considering a 

model of a single bottleneck link. We emphasize that the 

algorithm itself does not depend on any assumption of a single 

bottleneck; it is in this case though that the algorithm possesses 

an optimality property. 

Consider a link of capacity  shared by  long-lived 

background flows, where  of these use TCP and are out of our 

control while the rest will use our congestion control algorithm. 

If the link also carries a stream of dynamically arriving and 

departing short-lived flows with average throughput , then 

there is  bandwidth up for grabs for the background 

flows. We seek to optimize the bandwidth sharing policies used 

by the  non-TCP flows, called FAIRBAT (fair background 

traffic) flows hereafter for using our proposed algorithm, such 

that the leftover capacity is allocated fairly between all 

background flows including TCP ones. Furthermore, the fair 

allocation should take into account the impact on the download 

delays of the interactive flows. This leads to the social welfare 

maximization problem 

        

 (1) 

 

such that  over , 

where: 

·  is the average throughput achieved by the TCP 

and -th FB flow respectively. 

·  is the utility function of TCP and the -th FB 

flow respectively. The utilities intend to model users’ 

                                                           
1 To avoid confusion we emphasize the distinction between our model and the 

Kelly-based utility framework [9]; the latter models the instantaneous 

long-term average throughput response to marginal 

delay cost externalities1. 

·  is any nonnegative, non-increasing function, and 

·  is a normalized measure of the delay impact on 

the interactive flows when the FB flows obtain  

average throughput.  (See below.) 

The cost term reflects the externality imposed on the 

download delay of interactive users and caused by background 

downloads. It is important to note that the delay depends also2 

on the instantaneous bandwidth allocations which result from 

the particular congestion control mechanism used by each FB 

flow. Let  be the average download delay caused by a 

particular mechanism  when the FB flows obtain an aggregate 

throughput equal to  measured on a sufficiently long timescale 

such that the effect of short flows’ dynamics is averaged out. 

Let also  be the average download delay if no background 

flows existed in the link, i.e., . Then the delay impact 

 is defined as 

 

where s is the average flow size. Since  depends on the 

particular congestion control  used by each FB flow, the 

optimization in (1) is performed over all such possible 

mechanisms  in addition to the average throughputs . 

It is important to note that we do not change TCP; we are 

optimizing the way FB flows behave with TCP’s behavior taken 

as given. Since all TCP flows behave in the same way, we are 

justified in assuming that these flows possess the same utility 

. 

Theorem 4 in [7] shows that if the search for a congestion 

control mechanism is restricted to weighted versions of TCP, 

i.e., flows which obtain a fixed proportion of TCP’s throughput 

at any point in time –not just in the average sense- then the 

social welfare is nearly maximized for an appropriate choice of 

the proportion  (also called weight) by each FB flow . The 

relative difference between the social welfare obtained in this 

way and the optimal one vanishes as  increases. More 

importantly, the gradient projection of the social welfare along 

the  direction, , can be 

computed on the basis of local information by the -th FB flow 

because for weighed TCP one has  (see [7]) and 

. Hence one is led to consider the gradient 

projection-based weight adaptation algorithm 

 

(2) 

 

where  is the average throughput resulting from the 

application of TCP weights  during the time 

period of constant length  between iterations  and . The 

step gain  controls the speed of convergence and is such that 

bandwidth share response on network congestion signals such as packet drops 

or packet delay. 
2 It also depends on the interactive flow arrival and size statistics. 



the adaptation speed is sufficiently3 slow, i.e., the adaptation 

timescale  is long. 

       Notice that for performing the update (2) each FB needs to 

know . While this is not unreasonable since TCP’s behavior 

is well-known, in this paper we plan using the social welfare 

maximization (1) as a device for generating new congestion 

control algorithms for particular choices of  and  by the 

algorithm designer. In what follows we consider the effect of 

two such choices which give rise to two different algorithms, 

FAIRBAT-I and FAIRBAT-II. 

If  for every  then all background 

flows would have gotten an equal share of  if the cost 

term in (1) was neglected. The latter term shifts the balance 

towards allocations which hurt the interactive flows’ delay less. 

If we further assume a delay cost with  for every 

, where  is a constant, then at the equilibrium of (2), 

 (3) 

holds for all .  

The implied equilibrium allocation is rather simple and 

intuitive: at highly congested links where   is small, the FB 

flow gets a proportionally small amount relative to . At 

lightly loaded links where  is large, the FB flow gets nearly 

as much as TCP since  then. Of course such a behavior 

is sensible not only in single bottleneck links but also in 

multiple bottlenecks. However in the latter case 

 and the update (2) does not necessarily (approximately) 

maximizes social welfare. Still the resulting allocations could 

be desirable as shown in the example in Section IV.B. The 

viability and performance of such an algorithm, called 

FAIRBAT-I, or FB-I, is the object of study in the next sections. 

Other equilibrium behaviors can be effected for different 

choices of utility functions and/or , leading to different 

algorithms. A particular such choice arises when  are 

as above and  for every , i.e., a constant. Here, the 

equilibrium allocation is characterized by the relation 

 (4) 

 

       The rationale behind such allocation is that at lightly 

congested links where bandwidth is abundant and so  is large, 

a user of a background flow might be already satisfied with the 

throughput she gets and not want to compete with TCP for more 

bandwidth; on the other hand, at highly congested links the user 

might want to ensure that she achieves at least the throughput 

that TCP does. Such a behavior makes sense for rational users 

who would accept to use a transport protocol other than TCP 

only if they benefit from doing so, i.e., achieve a higher average 

throughput. An algorithm, called FAIRBAT-II, or FB-II, which 

implements such a protocol will be dealt with in the next 

sections. 

                                                           
3 Sufficiently slow for accurate estimates of the average throughput to be 

available. 

III. FAIRBAT ALGORITHMS

As stated in the previous section, the algorithm aims at 

reaching an equilibrium where the average throughput  of a 

FB flow satisfies (3) or (4) with respect to the average 

throughput  of a fictitious TCP flow following the same path. 

Moreover it should achieve this by using weighted TCP at every 

time; otherwise and (2) fails to maximize (1) 

in single-link bottlenecks.  

 
Fig. 1. The functional blocks of the algorithm interact in a fast control loop 

(horizontally) between a weighted TCP congestion controller and the network. 
The TCP weight is adapted in a slower control loop (vertically). 

The algorithm can be thought of as being composed by three 

separate functional blocks depicted in Fig. 1:  

 

1. A weighted TCP congestion control algorithm which 

given any weight  it tries to maintain a congestion 

window size equal to  times the congestion window 

of a fictitious TCP flow following the same path and 

facing the same loss events. 

2. An estimator of the average throughput   resulting 

over a long time period during which the weight  is 

kept fixed. This is needed in order to estimate the effect 

of choosing weight . 

3. After the effect of is estimated with sufficient 

accuracy, the weight adaptation step calculates the new 

weight value by (2) to be used during the -th 

iteration. 

Thus there are two control loops operating on different 

timescales. At a fast timescale typically of the order of a few 

round-trip times, the congestion window controlled by 

weighted TCP reaches a stochastic equilibrium. The throughput 

obtained by a FB (or any) flow is constantly modulated by the 

changing number of short-lived flows sharing part of the 

bottleneck links on the flow’s path. Hence the estimator needs 

to filter out any throughput fluctuations at least as fast as the 

timescale of short-lived flow dynamics, and so the estimator’s 

memory should be set on the order of tens of seconds or 

minutes. Choosing a longer memory will lead to a needlessly 

slow converging estimate and because of this the weight 

adaptation will need to be slowed down as well. Thus the weight 

adaptation control loop ideally should be as slow as the short-

lived flow dynamics. 



In the next paragraphs we describe the implementation of 

each functional component in Fig. 1. 

A. Weighted TCP through modifying TCP AIMD: -TCP 

The idea is to modify the TCP Additive Increase 

Multiplicative Decrease (AIMD) dynamics to obtain a 

throughput proportional to (unchanged) TCP. More 

specifically, the congestion window increment on each 

acknowledgement receipt is  (where in general 

). In [8] it is shown that the throughput is proportional to  

and so  should be used if one wishes to enforce a 

weight . Since both algorithms in Section II use  we 

will assume . If during the -th iteration the weight 

update algorithm uses the weight  then the increment 

 is used, and the congestion control algorithm 

(henceforth called -TCP) responds to congestion signals 

according to: 

 

 

This implementation performs with satisfactory accuracy on 

Random Early Detection (RED) buffers, for a wide range of 

values for the system parameters. Under the drop-tail policy this 

is no longer the case and unpredictable outcomes may occur, 

where -TCP flows obtain higher throughput than TCP even 

though their weight is well below 1. In Fig. 2, we show the 

congestion window evolution of the two protocols competing 

on a single link. On the left-side of the figure where the 

congestion window evolutions under RED is shown, both 

follow a typical saw-tooth pattern and the FB flow correctly 

obtains a portion of TCP’s throughput. On the other hand, under 

drop-tail the FB flow faces fewer multiplicative decrease events 

than TCP, meaning that it faces a lower loss rate. 

  
Fig. 2. The background flows congestion window evolution in time: Fig. 2a 

depicts the RED queue case, where both FB and TCP flows face equal dropping 
probability. At the drop-tail queue (Fig. 2b) TCP performs more window 

decrease events (higher loss rate), resulting to incorrect capacity sharing 
between flows. 

                                                           
4  corresponds to regular TCP. 

This paradoxical behavior is well known (e.g., see [11] ) and 

is due to phase-type effects arising by differences in the TCP 

gain. The effects insists appearing even when we inject (using 

the “overhead” parameter in ns-2 [12]) small random spaces of 

the order of tens of milliseconds between transmissions of 

consecutive packets and is not an artefact of the simulator. 

Typically the effects tends to disappear in large aggregation 

points where the synchronization breaks because of the 

randomness in packet transmissions arising due to the high 

number of flows. Since we cannot a priori rule out such phase-

type effects, we next describe a different implementation which 

intends to emulate weighted TCP over long timescales and 

avoids these effects. 

B. Weighted TCP through transmitting for only a portion of 

time: τ-TCP 

Contrary to the approach in the previous paragraph where 

we control the instantaneous flow “aggressiveness”, the main 

idea here is to keep the AIMD dynamics unchanged –so phase-

type effects as in -TCP will not occur- but let FB transmit only 

for a portion of time. The lifetime of each individual FB flow is 

divided into periods each consisting of two phases with a 

constant and a random duration denoted as  and , 

respectively.  should be set to be sufficiently larger than a 

Round Trip Time (RTT) in order for the TCP flows sharing the 

same links to reach equilibrium throughputs within that time. 

The purpose of the random second phase is to break any 

potential synchronization between different FB flows. Let 

 be the total duration of such a period, then each FB 

flow becomes active and transmits for time , while it 

remains silent without sending any data for , where  

is a supplied parameter. Thus, the average throughput obtained 

over many periods is approximately the  portion of what a 

constantly transmitting TCP would obtain. Hence if the weight 

update algorithm wants to apply weight  during the -th 

iteration then  should be set equal to .  

Even though -TCP emulates weighted TCP over long 

timescales it is not clear if the delay impact is close to that of 

the latter. The delay caused by -TCP flows could potentially 

be much larger than that caused by weighted TCP for the same 

long-term average throughput. This will entail higher delay 

costs in (1) and the social welfare could decrease. The next 

theorem shows that the relative delay decrease if weighted TCP 

is used in place of -TCP is no more than approximately 17.3% 

in the worst case. We note also that the upper bound 17.3% is 

tight. Recall the definition of  in Section II for a 

congestion control mechanism  used by the FB flows where 

-TCP, -TCP . Consider the case of a single link of 

capacity  where  FB flows coexist with  background TCP 

flows and a Poisson arrival stream of short TCP flows each 

associated with the download of an exponentially distributed 

random file size such that the imposed load is . In this 

system the FB flows could attain any amount of throughput  

between 0 and . The following theorem holds whose 

proof is relegated to the Appendix: 

On packet acknowledgement: 

 

On packet loss: 

 



Theorem 1: For any  the following 

is true: 

 

where  and . 

     For  Theorem 1 yields the upper bound 

 

Combining this with the  (tight) upper bound 

of relative delay decrease between weighted TCP and the 

theoretically optimal algorithm (see [7]), yields (the not tight) 

34.5% worst case bound for the difference between  -TCP and 

the optimal. Using the variational formula for the upper bound 

as well as the numerically obtained bounds in [7] one can easily 

show that 30.5% is a (tight) lower bound for the worst case 

difference when . For k=2 the bound  given by 

Theorem 1 is even lower. 

 

C. Average Throughput Estimator 

The goal of the estimator is to track the average throughput 
of the controlled flow on a timescale where fluctuations due to 
short flow session dynamics are averaged out. On every iteration 
just before the weight update, the moving average estimate  
is updated according to 

 (5) 

where  is the data rate over the period after the last update 
only. The gain parameter  is appropriately set in order for the 
estimator memory (which is of the order of)  to be at least 
as large as the timescale of short flow dynamics. Choosing a 
much higher value will lead to excessively slow convergence of 
the estimates. 

 As explained in Section II, under -TCP no estimator for  
is necessary since  and this fact allowed a weight 
update (2) requiring only local information. There is a subtle but 
intrinsic reason why this is not possible under -TCP: during 
inactive phases a competing TCP flow gets a higher bandwidth 
share than during active phases, so , i.e.,  is 
underestimating . In large links however where many flows 
coexist, the phase has a negligible effect on the bandwidth share 
of a TCP flow, and so  is not (significantly) underestimated.     

 Moreover in -TCP during inactive periods the rate is 0 so 
the convergence of the  estimate can be accelerated if inactive 
phases are taken a priori into account and not use the plain 
moving average update (5). In particular we use (5) only during 
active phases in order to get an estimate   of   (which 
underestimates the true  as explained) and then let . 
The  estimate used in the weight update algorithms below is 
obtained in this manner, when -TCP is used. 

D. Weight Adaptation 

The weight  of FB flow  is updated according to (2) 
using the estimated values  of . In particular, the first 
algorithm in Section II, FB-I, uses the weight update 

 

which results, if , , as 

assumed in motivating FB-I in Section II. If we use  

instead, we get the update step for our second algorithm: 

 

 

IV. SIMULATION RESULTS 

In this section, we present the results of the simulation 

experiments performed in ns-2 [12]. Our aim is to assess the 

conformance of algorithms FB-I and II to the respective notions 

of fairness (for both - and -TCP), (3) and (4), and to measure 

their impact on the download delays of short flows.  Further we 

compare with alternative congestion control protocols used by 

the background flows, such as TCP (Reno), LEDBAT [2] [3], 

and TCP-LP [4]. 

In what follows, the short flows follow a Poisson arrival 

process. Each such flow is associated with the transmission of 

a finite, exponentially distributed file size with mean 3Mbytes. 

In Subsection IV.A we consider a single bottleneck uplink with 

capacity Mbps, and in IV.B a sequence of two links of 

the same capacity. In the former case, RED is applied at the link 

buffer so that - TCP and -TCP can both be compared. (Recall 

that under drop-tail, -TCP may behave erratically because of 

phase effects.) In the two-link case, we consider the drop-tail 

policy so that a comparative analysis between -TCP and 

LEDBAT is possible since the latter was designed to work with 

the drop-tail policy [2]. 

A. Single link topology 

Here the web flows arrive at rate  flows/sec implying a 

link load  leaving up to  Mbps 

available for the background flows. In Fig. 3Fig. 3 we illustrate 

the average throughput obtained by FB flows by considering 

the (average of their) weight at equilibrium as more FB flows 

share the link. (A unit weight corresponds to the average 

throughput obtained by competing TCP background flows.) 

Each curve corresponds to a particular choice of algorithm (FB-

I/II, -TCP or -TCP) and to a particular number of coexisting 

TCP background flows. The curves marked with “theory” 

depict the values obtained from (3) or (4). Fig. 3a, which 

concerns the results of FB-I, shows that as the number of 

background flows and hence the average delay of the short 

flows increases, each FB flow obtains a smaller share compared 

to TCP, as required by (3). The converse happens in Fig. 3b as 

described in (4); the more congested the link becomes, the more 

similar to TCP the FB flows behave. -TCP seems to 

FAIRBAT-I: 

 

FAIRBAT-II: 

 



consistently underestimate the theoretically optimum FB flow 

throughput and favor TCP. This may be due to the intrinsic 

underestimation of TCP throughput discussed in III.C, which 

agrees also with the fact that the amount of underestimation is 

less in links with more flows. 

  
Fig. 3. FB weight  at equilibrium: As more background flows enter 

the network and the importance of delay increases, FB-I trades throughput for 
lower delay impact on the short flows (Fig. 3a). Contrariwise, in more 

competitive environments FB-II increases its weight to satisfy the objective for 

TCP-like throughput under high congestion (Fig. 3b). 

In Fig. 4 we depict the delay of short flows caused by the 

coexistence with background ones. We do not show separate 

curves for -TCP, -TCP and “theory” because they are 

practically identical. For comparison, we plot also the delay 

caused if the background flows used all TCP. Under FB-I (see 

Fig. 4a) the delay impact is significantly reduced relative to 

TCP as the link becomes more congested. This is the case also 

for FB-II (see Fig. 4b) in light congestion where each additional 

background flow has a decreasing marginal effect. At higher 

congestion the marginal increase of delay follows that of TCP.  

 

  
Fig. 4. The impact on the download delay of web traffic: Under TCP 

background flows the marginal impact is constant as more background flows 

are added.  The marginal impact of FB flows is varying depending on the level 

of congestion. FB-I and FB-II behave oppositely. 

Next, we consider how accurately each of the FB-I and FB-

II algorithms approximates the maximum social welfare for the 

respective definition of cost. To do this we check how close the 

gradient of the objective function in (1) is to being zero. For 

FB-I this corresponds to checking how accurately the equations 

 (6) 

 

for  are satisfied, where  is the delay impact. The 

reason we do not use (3) instead is that it is equivalent to (6) 

only when . This fact holds under an ideal weighted 

TCP algorithm, so since -TCP and -TCP are only 

approximations we check (6) directly. This does not pose any 

problem for FB-II since the associated objective function is 

independent of , and so we use (4). Note also that  are 

obtained by directly estimating the average throughput of TCP 

and FB respectively. 

In Fig. 5 we plot the left and right-hand sides of both (6) and 

(4) for , and . Fig. 5a shows 

the relevant plots for -TCP while those for -TCP are shown 

in Fig. 5b. Observe that -TCP closely satisfies (6), while -

TCP deviates significantly at higher values of . This deviation 

is not because  fails to equal  (since  as 

shown in Fig. 5b) but because -TCP underestimates  as 

explained in III.C. Interestingly, significant deviations are 

observed for FB-I only.  

  
Fig. 5. Check of equality of left and right-hand sides of the optimality conditions 

(6), (4) for FB-I and FB-II algorithms, respectively. The case of -TCP is 

shown on the left figure while -TCP is on the right. There is a noticeable 
deviation from optimality in the latter case for FB-I. 

B. A two-link topology with indirect effects 

As demonstrated in the last section, FB-I and FB-II allocate 

bandwidth between background flows such the social welfare 

(1) is approximately maximized. After all, their design was 

motivated from that problem. The problem though concerns a 

single link and FB-I/II cannot maximize social welfare in 

general multiple link networks as an example in a two-link 

topology depicted in Fig. 6 suggests. 

In this section, we investigate the case where the 

background flows and the web traffic do not share a common 

link but the latter are only indirectly affected by the FB flows 

through the  background TCP that go through both links. 

In this topology the more bandwidth is consumed by the FB 

flows in the first link, the better the delay of the short flows at 

the second link will be. This is because the  TCP background 

flows will leave more space at the second link, as they are 

squeezed more in the first. Thus the externalities caused to the 

short flows by the FB ones are positive. Hence the cost term in 

(1) should reflect these positive externalities. However the 

formula  which is justified as an approximation of the 

delay impact in the single link case cannot hold in our case since 

it models negative externalities only: according to the formula 

a higher  should improve the delay when in reality it has the 

opposite effect.  

 



 

Fig. 6. A two-link topology with the  FB flows indirectly affecting the stream 

of short flows (with load ) utilizing only the second link. The two links are 

coupled because of the  TCP background flows which use both links. Here the 
FB flows cause positive externalities to the short flows. 

So is e.g., FB-I a sensible algorithm for background flows 

in this scenario? Notice that an optimal weighted TCP 

algorithm would have to use weights always greater than 1, 

aiming to achieve the positive externalities. Any congestion 

control algorithm less aggressive than TCP will not be social 

welfare maximizing. In particular this is true for LBE 

algorithms such as LEDBAT, TCP-Nice, TCP-LP. In fact in 

topologies as in Fig. 6Fig. 6, existing LBE protocols will not 

only achieve lower throughput than FB-I/II but will also cause 

greater delays to the short flows since the background TCP 

flows are not going to be sufficiently squeezed.  

To quantify the magnitude of these effects we consider 

scenarios where the  background flows, which traverse the first 

link only, all use either LEDBAT, TCP-LP, or TCP and 

compare with FB-I/II. We us the ns-2 implementation of 

LEDBAT available in [13], while for TCP-LP we use the one 

provided in ns-2. (In all cases the default parameters were used.) 

The number of background TCP flows k=10 is constant and the 

web flows arrive at a rate of 1/12, flows/sec, resulting to load 

. The number  of background flows varies in 

different experiments from 10 to 30.  

In Fig. 7 we present the aggregate throughput obtained by 

the LBE protocols and FB-I/II normalized by the aggregate 

throughput obtained by the same  flows when they use TCP. 

As expected, the  background flows get the highest throughput 

when they use TCP. The FB-I/II flow throughput is much closer 

to TCP than to the LBE flows. Nevertheless Fig. 8 shows that 

the delays caused by FB-I/II (when normalized by the delays 

caused by TCP) are much lower than those of LBE and close to 

those under TCP. 

It is also interesting to note the effect of the cost coefficient 

. While by (3) a lower value of  yields a more aggressive 

protocol (see difference between  and  in Fig. 7),   

 

 
Fig. 7. The throughput achieved by each of the background flows in Fig.6 
under different protocols. (The throughput is normalized by that when the 

flows use TCP.) 

the presence of positive externalities in this topology cause the 

delay of short flows to decrease, as shown in Fig. 8b. 

  
Fig. 8. The delay caused to the short (web) flows when the  background flows 
in Fig. 6 use different protocols. (The delay is normalized by the one caused 

when TCP is used.) In 8b the delay caused by FB is shown more closely: more 

aggressive flows ( ) cause lower delays.  

In other multiple link topologies positive and negative 

externalities can act at the same time. We expect that the 

throughput and delay impact performance of FB-I/II will 

always lie in between that of LBE protocols and TCP, without 

being clear which of the latter two is the best or worst. As shown 

in the single link and the two link example of this section, more 

satisfactory operating points seem to exist between the 

extremes offered by TCP and LBE protocols and are achievable 

the FB algorithms. 

V. CONCLUDING REMARKS 

     The nearly identical performance of - and -TCP shown in 

Fig. 3 and 4Fig. 3 is remarkable and suggests that even though 

the delay they cause may differ up to  for the same FB 

throughput, a small drop in throughput (which implies a small 

drop in utility) leads to large delay savings. Of course the exact 

significance of such a change depends on the precise utilities 

and cost functions but we believe that trading off average 

throughput for delay is far more effective than employing 

intricate congestion control mechanisms. Thus the 

instantaneous bandwidth sharing patterns seem to be 

unimportant insofar as the long-term throughput remains 

unchanged. This observation further justifies the approach 

taken in this paper and [7], i.e., that of considering the problem 

of allocation of the leftover capacity as logically separate from 

the problem of instantaneous bandwidth sharing dealt in [9]. 

APPENDIX 

In this section we obtain the proof of Theorem 1. Let  be 

the worst case relative delay decrease, i.e., the left-hand side of 

the inequality in Theorem 1, under  background TCP and  FB 

flows. We first derive a formula for .  

Since the active phases of the -TCP flows are not 

synchronized, the equilibrium number  of active flows is 

binomially distributed with “success” probability . This 

probability satisfies , where z is the aggregate 

average throughput obtained by all FB flows, and we call 

 the share of leftover capacity obtain by the FB flows. 

From the analysis in [7] we know that in a link with  

background TCP (and no FB) flows the resulting average 



number of short flows is . Since the 

active phases of the -TCP flows are much longer than the 

timescale of the short flow dynamics, the last formula gives the 

average number of short flows during periods of time where  

-TCP flows are active. Thus the overall average number of 

short flows is . Using the analysis of 

weighted TCP from [7] we get the formula 

 

Lemma 1:  is increasing in  and so  where 

. 

Proof: It suffices to show that  is increasing in . Let  be a 

binomial random variable for  trials with  

success probability  such that , i.e., . 

Then it is straightforward to check that the ratio of the 

(binomial) densities of  over that of  is unimodal in 

 and that  is neither stochastically greater nor less 

than . These two conditions and the fact that  

imply that  is less than  in the convex order from Theorem 

3.A.53 in [14]. This in turn implies . Now 

under  FB flows the  active flows obtain the same 

share , i.e., , and so 

. Since  concern the same number 

of trials their means must be ordered according to , 

i.e., . If the limit  was 

infinite then  which contradicts our 

assumption, so  and hold. QED 

Since  exists (see proof of last Lemma), the 

distributions of  converge to a Poisson with rate  and so 

can be expressed alternatively as  

 

where  for a rate  Poisson random variable. 

Lemma 2:  for every , and 

 . 

Proof: 

 

To show the second part notice that 

 

and . Both the equation and the boundary 

condition are satisfied for  which 

hence is the unique solution. QED 
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