
Minimally Intrusive Server Policies for
Background Data Transfers

Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

Abstract We consider the problem of designing access control protocols for servers
distributing background data, such as software and database updates, so that they
cause the least possible disruption to flows carrying delay-sensitive data. Using
a Markov decision process formulation we obtain the optimal policy analytically,
which is not easy to implement in practice. A mean-field argument is employed to
show that another policy, which is easier to implement and is based on water-filling,
converges to the optimal as the number of bottleneck links increases. Using simu-
lations we compare the performance of this policy with the standard case where no
control is exercised by the server.

1 Introduction

In this paper we look at the problem of designing data transmission policies at the
server side for data which are not delay-sensitive, such as software and database
updates, backup and content replication, content cache prefetches, all commonly
referred to as background. These policies are important as they usually involve the
transfer of big volumes of data which can potentially cause increased download de-
lays to delay-sensitive data such as web traffic, video and audio streaming over TCP
when they share the same network resources. This problem has been recognized
in Deb et al (2005); Key et al (2005); Shai et al (2007); Courcoubetis and Dimakis

C. Courcoubetis
Department of Engineering Systems and Design, Singapore University of Technology and Design,
Singapore, e-mail: costas@sutd.edu.sg

A. Dimakis, M. Kanakakis
Deparment of Informatics, Athens University of Economics and Business, Athens, Greece, e-
mail: dimakis@aueb.gr, e-mail: kanakakis@aueb.gr. A. Dimakis was supported by a grant funded
and administered by the Research Centre of Athens University of Economics and Business
(RC/AUEB).

1

2 Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

(2012), and end-to-end congestion control mechanisms were proposed which offer
explicit or implicit throughput guarantees to background data, while at the same
time attempt to have a minimal impact on the download delay on delay-sensitive
data. All this cited work critically depends on the assumption of a single bottleneck
link. As servers are associated with multiple clients and the server-side access net-
work is rarely the bottleneck, such mechanisms are not useful in this context because
multiple bottlenecks may exist.

In this paper we start from the Markov decision problem for a single link in Cour-
coubetis and Dimakis (2012) but we narrow the set of policies by imposing addi-
tional constraints on action space which exclude policies which are not practical
to implement on the basis of link congestion information alone. In Theorem 1 we
analytically derive the optimal policy which still rests on a single bottleneck link
assumption. However the structure of this optimal policy can be approximated by
a suboptimal policy –the Water-Filling Algorithm (WFA) introduced in Sect. 3–
which is easy to implement when multiple bottlenecks exist. In Theorem 2, using
a mean-field argument, we show that the approximation becomes tight as the num-
ber of bottlenecks increase to infinity. In fact when the link and traffic characteristics
are homogeneous, Theorem 2 implies that WFA is optimal in the limit (Corollary 1).
WFA essentially limits the maximum number of data transfers and prioritizes faster
transmissions. Interestingly, this is just what a BitTorrent seeder does (e.g., see Co-
hen (2003)), and so our analysis reveals the conditions under which it behaves opti-
mally and in what sense. In Sect. 4 we develop a prototype implementation of WFA
in the ns2 simulator, and compare its performance to the standard case where no
control is exercised by the server. Our findings indicate that WFA can result to sig-
nificant (20% to 30%) reductions in the average download delay of delay-sensitive
flows.

2 Optimal Policy for a Single Bottleneck

Consider a server which wants to send background data with long-term average
rate b. The server uses a link with capacity C shared also by a constant number k
of persistent TCP flows, and a dynamically arriving stream of delay-sensitive TCP
flows. The latter concern transfers of files with independent and exponentially dis-
tributed file sizes, of mean µ−1, and arrive at the link according to a Poisson process
with rate λ arrivals per unit time. Define the offered load of delay-sensitive flows as
ρ = λ/(µC). All TCP flows (whether persistent or not) are assumed to receive an
equal bandwidth share, xn, when the number of delay-sensitive flows in the system
is n. The server influences xn by picking the number an of TCP flows to use at state
n, through the formula xn = C/(n+ k+an). Since any value of xn can be achieved
for some choice of an when the latter is permitted to be nonintegral, we consider
(xn,n≥ 0) to be the decision variables. The number n of short flows evolves accord-
ing to a Markov chain with state space {0,1,2, . . .} and transition rates:

Minimally Intrusive Server Policies for Background Data Transfers 3

n→

{
n+1 , with rate λ ,n≥ 0 ,
n−1 , with rate µnxn ,n≥ 1 .

(1)

Notice that n is not known directly by the server but may be inferred indirectly
through congestion indicators, such as packet losses or packet delay. This is easy to
do if these indicators are monotonic functions of n, but it becomes highly nontrivial
if they are not. For example, whenever xn < xn+1,xn+2 = xn, one cannot differentiate
between states n,n+2 on the basis of congestion indicators alone unless past infor-
mation is kept. We would like to avoid such complex policies and for this reason we
require that xn is decreasing in n.

Now let (πn,n = 0,1, . . .) be the stationary distribution of the Markov chain
when it does exist. The average download delay of the delay-sensitive flows is
∑

∞
n=0 nπn/λ , by Little’s law, and the problem we solve is the following:

min
∞

∑
n=0

nπn (2)

such that: (πn,n≥ 0) is the stationary distribution of (1) (3)

xn ≤
C

k+n
,n = 0,1, . . . (4)

b+
∞

∑
n=0

kxnπn =C(1−ρ) (5)

xn ≥ xn+1 ,n = 0,1, . . . (6)
over xn,πn ≥ 0, n = 0,1, . . . (7)

Equation (4) is due to the link capacity constraint and the fact that all TCP flows get
equal bandwidth shares, and (5) requires the sum of the rate offered by background
data and the throughput of persistent TCP flows to equal the long-term capacity
not used by delay-sensitive flows, i.e., the throughput obtained by background data
matches the offered load.

The first main result concerns the structure of the optimal policy:

Theorem 1 (Structure of the optimal policy). The optimal policy (xn,n ≥ 0) sat-
isfies

xn =

{
xn−1 , if n≤ n∗ ,

C
k+n if n > n∗

,n = 1,2, . . . (8)

for some finite nonnegative integer n∗.

Proof. A straightforward modification to Lemma 2 in Courcoubetis and Dimakis
(2012) implies that under the identification

π̄n = xnπn
k

C(1−ρ)−b
,yn+1 =

π̄n

π̄n+1
,n = 0,1, . . . , (9)

4 Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

the problem (2)-(7) is equivalent to the problem (21) in Courcoubetis and Dimakis
(2012) with the additional constraint yn+1/(n+ 1) ≤ yn/n for all n = 1,2, . . ., over
the variables yn+1, π̄n,n≥ 0. We will show that the optimal solution satisfies

yn =

{
n

ρ(k+n−1) n≥ m
nyn−1
n−1 1≤ n < m

, (10)

for some m ≥ 1. Assume for the moment that this is true. Then (10) is equivalent
to (8) by the identification (9) and n∗ = m− 1. Thus it suffices to show (10) to
conclude the proof. Observe that the second eq. in (9) and the fact that (π̄n) is a
probability distribution imply that (π̄n,n ≥ 0) can be interpreted as the stationary
distribution of a birth-death chain with unit birth rate and death rate yn in state
n≥ 1. Now suppose ym+1 < (m+1)/(ρ(k+m)) and ym > mym−1/(m−1) for some
m≥ 1. Then there exist some other set of death rates (y′n,n≥ 1) with ym+1 < y′m+1 ≤
(m+ 1)/(ρ(k +m)), ym > y′m ≥ mym−1/(m− 1), y′n = yn for all n /∈ {m,m+ 1},
for which the corresponding stationary distribution (π̄ ′n,n ≥ 0) of the birth-death
chain continues to satisfy the target throughput constraint (19) in Courcoubetis and
Dimakis (2012).

Lemma 1. (π̄n,n≥ 0) dominates (π̄ ′n,n≥ 0) in the convex stochastic order.

Proof. First note that sgn(π̄n − π̄ ′n) = sgn(π̄0 − π̄ ′0)
1 for all n < m since yn =

y′n in that range. Similarly sgn(π̄n − π̄ ′n) = sgn(π̄m+1 − π̄ ′m+1) for all n > m is
true. Now sgn(π̄m− π̄ ′m) = sgn(π̄m−1y−1

m − π̄ ′m−1y′m
−1) ≤ sgn(π̄m−1− π̄ ′m−1), since

y′m ≤ ym which follows from the fact that (π̄n) and (π̄ ′n) have the same mean (cf.
Eq. (19) in Courcoubetis and Dimakis (2012)) and y′m+1 ≥ ym+1. In turn this implies
sgn(π̄m− π̄ ′m) ≤ sgn(π̄m+1− π̄ ′m+1). Thus, π̄n− π̄ ′n can change sign at most twice
as n goes from 0 to ∞. It is easy to see that the distributions (π̄n) and (π̄ ′n) are not
stochastically ordered so Theorem 1.A.12 in Shaked and Shanthikumar (2007) im-
plies that π̄n− π̄ ′n cannot change sign only once. Thus there are exactly two sign
changes and so by Theorem 3.A.57, (π̄n) dominates (π̄ ′n) in the convex stochastic
order. ut

The Lemma implies ∑n n2π̄ ′n < ∑n n2π̄n and so (yn,n ≥ 1) is not optimal which
contradicts our assumption. Therefore it must be that no such rates (y′n,n ≥ 1) as
above exist, i.e., the optimal policy satisfies yn+1 = (n+ 1)/(ρ(k+ n)) or yn/n =
yn+1/(n+1) for all n≥ 1. Notice that if yn = n/(ρ(k+n−1)) then (n+1)yn/n =
(n+1)/(ρ(k+n−1))> (n+1)/(ρ(k+n))≥ yn+1, and so yn+1 = (n+1)/(ρ(k+
n)) must be true. This proves (10). ut

Still, this algorithm is difficult to implement in the case where multiple bottle-
necks between the servers and its clients exist. A straightforward implementation,
where an independent version of the optimal policy (8) runs on each bottleneck
link, requires the clients to be classified according to the bottleneck links they share.

1 sgn(x) = 1 is the sign function: it takes the values -1,0,1 if x < 0, x = 0, or x > 0 respectively.

Minimally Intrusive Server Policies for Background Data Transfers 5

Since the identification of bottlenecks is nontrivial and approximate, we do not pur-
sue this approach in favour of a simpler one. In the next section we consider an
algorithm that does not need to know about bottleneck links. It is not optimal, but
its performance approximates the optimal as the number of clients and their bottle-
neck links increase.

3 A Water-filling Algorithm

In this section we consider a model of a system with multiple parallel bottleneck
links and present a “Water-Filling Algorithm” (WFA) which does not explicitly keep
track of links.

3.1 Multiple Bottleneck Model

Consider L parallel links indexed by l = 1, . . . ,L, where link l has capacity Cl , it is
used by kl persistent (non-background) TCP flows and an arriving stream of delay-
sensitive flows of a finite size under the same distributional assumptions used in
Sect. 2. The arrival rate, average size and load is λl ,1/µl and ρl respectively. The
amount of background traffic on this link is bl which we do not assume to be known
to the server. Let nl be the number of delay-sensitive flows on link l, and n = (nl , l =
1, . . . ,L). The bandwidth share of each TCP flow on link l is

xl
n =

Cl

nl + kl +al
n
, (11)

where al
n is the number of background TCP connections the controller allows (on

link l) when in state n.
Obviously, the problem of minimizing the average download delay is decompos-

able into a set of L independent minimization problems, one for each link. Thus the
optimal xl

n is given by (8) using the parameters of the l-th link. Instead, we are going
to consider the following policy: for any positive a > 0, the xl

n are chosen according
to the optimum solution to the problem max∑l Cl logxl

n such that (11) and ∑l al
n ≥ a

over al
n ≥ 0, l = 1, . . . ,L. Since at the optimum ∑l al

n = a holds, the algorithm oper-
ates such that in each state a total number a of background connections is assigned
to the links such that ∑l Cl logxl

n is maximized. As time passes and the state evolves,
the a connections are continuously reassigned on different links. By considering the
KKT conditions it is readily shown that the optimum solution is characterized by
the property that there exists a value of throughput x(a) for which ∑l al

n = a and the
following holds:

If al > 0 then xl
n = x(a) ; if

Cl

nl + kl
< x(a) then al = 0 . (12)

6 Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

This characterization implies that the optimum solution (al
n, l = 1, . . . ,L) can be

found by a so-called “water-filling” algorithm: start pouring a volume a of water in
L tanks of infinite height, unit length and width Cl for the l-th tank. Also, let the
bottom of the l-th tank be located at a height (nl + kl)/Cl above ground. If tank l
holds al

n volume of water then the water surface is located at height (nl +kl +al
n)/Cl

above ground. If we assume that tanks have no walls and water can freely circulate
between them, the tanks with smaller heights start to fill first. When the pouring
of water stops the “water level” will be located at some height, say 1/x(a), above
ground for any tank with al

n > 0. For empty tanks, their depth raises above water
level, i.e., (nl + kl)/Cl > 1/x(a) if al

n = 0. Thus the throughput x(a) corresponds to
the inverse of the water level. In the context of a data server, the same water-filling
effect can be achieved by the following conceptual continuous reshuffling of TCP
connections:

1. Let al
n be the initial allocation of TCP connections to link l, which may not be

optimal.
2. Start shutting down infinitesimally small fractions ε of connections from links of

smaller throughput (which corresponds to a higher water level), i.e., decrease al
n

by ε , and start using them in any link l′ with higher throughput xl′
n > xl

n, i.e., by
increasing al′

n by ε .
3. Repeat the previous step.

The only equilibrium of this procedure is characterized by (12), for if there existed
links l, l′ with al

n,a
l′
n > 0 and xl

n 6= xl′
n then TCP connections will “move” from the

link of the higher throughput to that with the lower one.

3.2 Asymptotic Optimality of the Water-filling Algorithm

We consider a mean-field limit as the number of links increases. Assume that for
each R ≥ 1 we construct a replica of the set of L links defined in Sect. 3 such that
there are R links with capacity Cl , accepting independent arrivals of delay-sensitive
flows with parameters λl ,µl ,ρl for each l = 1, . . . ,L. Thus each link is indexed by l
and the replica index r = 1, . . . ,R. Let nr,R

l (t) be the number of delay-sensitive flows
on the link of type l in the r-th replica. Also define NR

r (t) = (nr,R
l (t), l = 1, . . . ,L) ∈

NL, the state of links of the r-th replica, and NR(t) = (NR
r (t),r = 1, . . . ,R)∈NRL the

system state at time t. Under WFA, NR(t) is a Markov chain and we will consider
the empirical distribution defined by

f R(t)(A) =
1
R

R

∑
r=1

δA
(
NR

r (t)
)
, (13)

for any A⊂ NL, where δA is the unit mass at A.
The RL links are coupled through the bandwidth sharing resulting from WFA for

a total number Ra of connections, where a > 0 is a constant. Thus as the number

Minimally Intrusive Server Policies for Background Data Transfers 7

of replicas increase, the average number of background connections per link is con-
stant. As we are not interested in the mean-field convergence proof itself, we will
assume that the processes converge in a certain strong sense and then proceed to
show that their limit satisfies (8).

Theorem 2. If f R(t) d→ f a.s. as t,R→ ∞, where f is a nonrandom probability
measure on NL then the proportion of type l links that are in state n is given by the
stationary distribution under the single link optimal policy (8) applied to link type l.

In other words, as R→ ∞ WFA operates each link of type l according to the
optimal policy corresponding to l for some threshold n∗, which does not need to
coincide with the single link optimal.

Proof. The key is that the link states are coupled only through the water level, which
in turn depends on NR(t) only through the distribution f R(t). Let x(Ra,R f R(t)) be
the inverse of the water level at time t, i.e., the level of TCP throughput attained
by links with nonzero background flows. We write this as a function of Ra, the
total number of background TCP connections allocated by WFA, as well as R f R(t)
which corresponds to the count of replicas in each replica state at time t. First notice
that x(·, ·) is homogenous, i.e., x(MRa,MR f R(t)) = x(Ra,R f R(t)) for any integer
M ≥ 1, so x(Ra,R f R) = x(a, f R) where we have used the obvious extension for
fractional M. Now let f l,R

i (t) be the proportion of type l links that are in state i, i.e.,
f l,R
i (t) = f R(t)(Al

i) for Al
i = Nl−1×{i}×NL−l . Then,

d
dt

E f l,R
i (t) = λlE f l,R

i−1(t)+µl(i+1)E
[

f l,R
i+1(t)min

(
Cl

i+1+ kl
,x(Ra,R f R(t))

)]
−E

{
f l,R
i (t)

[
λl +µl imin

(
Cl

i+ kl
,x(Ra,R f R(t))

)]}
Taking limits in t,R and using the homogeneity and continuity of x(·, ·) yields

0 = λl f l
i−1 +µl(i+1) f l

i+1 min
(

Cl

i+1+ kl
,x(a, f)

)
− f l

i

[
λl +µl imin

(
Cl

i+ kl
,x(a, f)

)]
, (14)

for each i = 0,1,2, . . ., where f l
i = f (Al

i), f l
−1 = 0.

Notice that this is just the global balance equations characterizing the stationary
distribution of the chain (8) for a n∗ corresponding to the inverse water level x(a, f),
i.e., x(a, f) =Cl/(n∗+ kl). ut

In certain cases, WFA not only shares the same structure with the optimal policy
but the two coincide.

Corollary 1. If the links are homogenous, i.e., L = 1 then WFA coincides with (8)
for a such that WFA obtains throughput b1, i.e., the same throughput as (8).

8 Costas Courcoubetis, Antonis Dimakis, and Michalis Kanakakis

Proof. Theorem 2 guarantees that WFA and (8) have the same structure but not nec-
essarily the same threshold. Since they obtain the same throughput, their thresholds
must coincide as the throughput in (8) depends monotonically on n∗. ut

4 Water-filling Algorithm Implementation

In this section we consider a prototype implementation of WFA in the ns2 simu-
lator and compare its performance with the case where no control is exercised by
the server, i.e., every background file transmission request is served by one TCP
connection as soon as the request arrives.

As in the ideal WFA, the implementation utilizes at most a number a of TCP
connections at any given time. This number is slowly adapted in order to match
throughput with offered demand. Although the ideal WFA is able to know exactly
the TCP flow throughput over any link l, this is not possible here. Neither the number
of links is known. The idea is to use the previous transmissions to estimate the
throughput of upcoming transmissions to the same client. Thus each background
file is send over multiple transmissions of 1 MB chunks. Each chunk is transmitted
over one TCP connection which terminates after chunk’s completion. The maximum
number of simultaneous TCP connections used for chunk transmissions is controlled
by the parameter a. Thus no more than a chunks are transmitted simultaneously
and these chunks may belong to different files. For each file we keep track of its
pending chunks as well as the throughput obtained by its last transmitted or currently
transmitting chunks. Each time a chunk completes, the next transmitted chunk is the
one which belongs to the file with the highest throughput. In this way, more TCP
connections are allocated on links (actually files) offering higher TCP bandwidth
share. Thus a throughput balancing effect across TCP flows on different links arises,
similar to ideal WFA.

We next compare the performance of this WFA implementation against the case
of a server which does not exercise any control to its flows. In order to separately
evaluate the effect of limiting the number of connections to a and the prioritization
of links with higher throughput in WFA, we also compare with a First-Come-First-
Served (FCFS) policy. This policy limits the number of connections as WFA does,
but it does not do any prioritization; all files are served in a FCFS basis. We consider
the case of 2, 4, and 8 parallel identical links of capacity Cl = 10 Mbps, where each is
traversed by a single (nonbackground) persistent TCP flow, i.e., kl = 1 and a delay-
sensitive stream of flows with λl = 1/4.8 arrivals/sec and average size 1/µl = 3 MB.
One background file transmission request arrives every 24 sec uniformly distributed
across links and according to a Poisson process, where the file size is exponentially
distributed with mean 12 MB. In Fig. 1 we depict the average number of delay-
sensitive flows in the system versus the average number of background flows. The
points in the curves for WFA, FCFS were obtained for different selections of the
parameter a. WFA reduces the delay of delay-sensitive flows relative to ‘no control’
from 21% to 31% depending on the case. Since FCFS lies almost in the middle

Minimally Intrusive Server Policies for Background Data Transfers 9

Fig. 1 Average number of
delay-sensitive flows versus
the average number of back-
ground flows in the system.
The implementation of WFA
brings significant delay re-
ductions compared to ‘no
control’.

7 8 9 10 11 12

average # of delay-sensitive .ows

5

10

15

20

25

30

av
er
a
g
e
#
o
f
b
a
ck
g
ro
u
n
d
.
ow
s

WFA (2 links)
WFA (4 links)
WFA (8 links)
FCFS (2 links)
FCFS (4 links)
FCFS (8 links)
no control (2 links)
no control (4 links)
no control (8 links)

between WFA and ‘no control’, with respect to delay, we see that half of the delay
reductions were due to limiting the number of simultaneous TCP connections (i.e.,
the a parameter) and the rest were due to prioritizing links with higher throughput.
The increase of links from 2 to 8 brings a 2-8% delay drop under WFA, depending
on the case.

5 Conclusions

In this paper we have shown that a simple background data transfer policy such
as limiting the maximum number of active TCP flows transferring data to clients,
and prioritizing faster flows yields significant download delay reductions to delay-
sensitive TCP flows, compared to exercising no control on client flows. In theory
(suggested by Theorem 2) more elaborate data transfer policies in large servers do
not bring any significant additional reductions, unless nonstationary policies exploit-
ing past information are used.

References

Cohen B (2003) Incentives build robustness in BitTorrent, available in
http://www.bittorrent.org/bittorrentecon.pdf

Courcoubetis C, Dimakis A (2012) Fair background data transfers of minimal delay impact. IN-
FOCOM, 2012 Proceedings IEEE pp 1053–1061

Deb S, Ganesh A, Key P (2005) Resource allocation between persistent and transient flows.
IEEE/ACM Trans Netw 13(2):302–315

Key P, Massoulie L, Vojnovic M (2005) Farsighted users harness network time-diversity. In: IN-
FOCOM, 2005 Proceedings IEEE, vol 4, pp 2383–2394

Shai L, Vojnovic M, Gunawardena D (2007) Competitive and considerate congestion control for
bulk data. In: 15th IEEE International Workshop on Quality of Service, pp 1–9

Shaked M, Shanthikumar J (2007) Stochastic Orders. Springer-Verlag New York

