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Abstract—We consider the problem of formation of an
economically sustainable computational resource federation by
Cloud Service Providers (CSPs). The federation aims at providing
improved quality of service, expressed in terms of average total
delay per job provided to clients served by the CSPs. Each
CSP is modeled as an M/M/1 queue. The queue may serve
requests coming from that CSP’s own client, as well as requests
coming from clients of other CSPs. Our model includes all salient
factors to evaluate the economics of such a federation: we model
the energy consumption cost of each CSP as a function of its
resource utilization factor, and we model the CSP’s revenue
by a delay-dependent pricing function according to which each
CSP charges its clients. We propose a model for the formation
and evaluation of a cloud federation according to which each
CSP may transfer a portion of the requested workload from its
clients to other CSPs within the federation. A federation policy
is specified by the portions of workload transferred from each
CSP to other CSPs. We formulate the problem of finding the
federation policy that maximizes the total profit (revenue minus
cost) of CSPs and we also deal with the incentives of individual
CSPs. Finally, we conduct several experiments under different
setups. The numerical results show that according to our model
CSPs can maximize the total profit of the federation and also
achieve a nearly optimal QoS.

Keywords—Cloud federation, Queueing theory, Resource pool-
ing, Pricing, Cooperation, Profit maximization.

I. INTRODUCTION

Cloud Service Providers (CSPs) usually have geograph-
ically dispersed servers in order to satisfy client requests
through their storage or computational resources. Client re-
quests are themselves arising in different locations. The stream
of client requests has time-varying characteristics. Hence, the
load at the servers of a CSP is time-varying, and thus the
quality of provisioned service (e.g. the job execution delay) is
also time-dependent and unpredictable. A solution to alleviate
the temporal variation of load requests, would be to invest more
in resources (e.g. servers and computational capacity) at the
expense of increased costs. A natural means to refrain from this
investment is to respond to such load variations by employing
cloud resource federation policies. In a cloud federation, two
or more CSPs offer their resources in a common pool so that
resources owned by one CSP can also be used to serve tasks
coming from clients of other CSPs.

Several instances of academic cloud federations or com-
mercial platforms already enable in reality the concept of cloud
federation through different private and public clouds. The
European Grid Infrastructure Federated cloud [1] is a seamless
grid of academic private clouds and virtualized resources, that
serves the needs of the scientific community. The OnApp Fed-
eration [2] constitutes a network of Infrastructure as a Service
(IaaS) among CSPs and connects them through the OnApp

market, where each member of the federation can buy and
sell capacity on demand. The Arjuna’s Agility framework [3]
has been developed in order to deliver the service agreements
and policies that are needed in federations. Another free and
open-source cloud computing software that can be used to
enable the CSP federation at the IaaS level is OpenStack.
Recently, Rackspace and CERN started working together on
the CERN Openlab project [4], aiming to build a seamless
federation among multiple private and public cloud platforms
on OpenStack. Finally, the European FP7 project BonFIRE
[5] offers a federated testbed that supports large-scale testing
of cloud services over multiple, geographically distributed,
heterogeneous cloud and network testbeds.

In a cloud federation, CSPs cooperate and pool together
their resources in order to improve the QoS of their client
requests in a seamless manner. The coordination mechanism
of resource pooling should be agreed a priori between the
CSPs, and the CSP whose resource is actually utilized to serve
the client request is indifferent to the client. Cloud federation
mechanisms should be designed to be flexible enough so that
any CSP should take part in a federation regardless of the
amount of owned resources. On the other hand, the federation
mechanism should be appropriately designed so that it provides
incentives to CSPs to pool (part of) their resources and devote
them to serve requests from other clients. These incentives
should include a mechanism for profit sharing among the
federated CSPs in a way that does not discourage them from
joining a federation. There arise several advantages for CSPs
when they get involved in a federation. First, a CSP can expand
its geographic coverage range and come closer to the client if
it uses servers of some other CSP. Moreover, CSPs do not need
anymore to over-dimension their infrastructure, since dynamic
inter-cloud load balancing can be achieved by outsourcing
jobs to federated CSPs in response to peak-demand workloads.
This migration of jobs within the federation may (and in fact
should) have positive repercussions both for the CSP in terms
of cost (e.g. energy) reduction and for the clients in terms of
improvement in QoS for their requests.

Different modes of cloud federation have been proposed
in the literature; they can be classified into three categories:
(i) Cloud infrastructure aggregation [6], [7], where different
CSPs integrate their infrastructures into one unique virtualized
infrastructure, (ii) hybrid cloud federations [8], which com-
bines the infrastructures of private and public clouds, and (iii)
brokering [9], [10], where the cloud federation brings together
multiple CSPs into a global marketplace where each participant
buys and sells computational capacity on demand.

In this work, we model and study the problem of cloud
federation, whereby federated CSPs pool (part of) their infras-
tructure, with emphasis on the formation of an economically
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viable federation. Our technical contributions are as follows.

• We develop an abstraction model for the CSP’s in-
frastructure and service through an M/M/1 queueing
system.

• We model the salient factors that determine the net
benefit (profit) of a CSP, i.e. a pricing function that
each CSP uses to charge its clients, and the cost from
energy consumption at servers.

• We model a federation policy agreed among CSPs
as the portion of jobs’ requests transferred from each
CSP to other CSPs within the federation in order to
be served through their server infrastructure.

• We formulate the problem of finding the federation
policy that maximizes total profit for the CSPs, we find
the optimal federation policy as the solution of non-
linear optimization problem and we provide a rule for
the sharing of the generated profit of the federation.

In order to demonstrate our model, we restrict our attention
to federations comprising two CSPs. The paper is organized
as follows. In section II, we present our model for the CSP as
well as our assumptions. In section III we define the federation
policy, and we formulate and solve the relevant optimization
problem. In section IV we present our numerical results, in
section V we discuss some related work, and in section VI we
present our conclusions.

II. THE MODEL

A. M/M/1 queueing model abstraction of the CSP
We consider a set of N CSPs. In order to demonstrate

our approach, we take N = 2. For CSP i, let Ci denote its
computational capacity (in flops/sec). The job requests from
all clients of CSP i arrive according to a Poisson process of
rate λi (jobs/sec). The size of the job is expressed in terms
of the number of operations it entails. We assume that this
size follows the exponential distribution with mean number
of operations per job L. Hence, the average service rate (in
jobs/sec) for CSP i is μi = Ci

L , while the service time of a

job is exponentially distributed with mean 1
μi

.

Average task execution delay as a measure of client QoS.
Each CSP offers a level of QoS for the tasks of its clients. This
QoS is the average task execution delay. By standard queueing
theory for the single-server M/M/1 queue, the average delay
di for jobs served by CSP i infrastructure is given by:

di =
1

μi − λi
. (1)

Why is a single-server M/M/1 queueing model reason-
able? A typical CSP consists of multiple physical hosts that
serve the incoming job requests. When the requests arrive in
the CSP, they are translated into VMs and then they are served
by the CSP’s virtualized infrastructure. Each job spends some
time in the system until it is finally served. This time duration
depends on the size of the job, the number of existing requests
that wait to be served and on the availability of resources when
the request arrives; hence, a queueing model is applicable. In
order to abstract the system of a CSP with multiple servers
and queues, we further assume that perfect dispatching and
scheduling of requests without idling of resources is applied. If
the CSP constitutes of n identical servers of computational ca-
pacity C/n each, then this optimal intra-CSP dispatching and
scheduling policy should achieve the same average utilization
level ρ of all CSP servers. Under these assumptions, we can

model the CSP as a single-server M/M/1 system computational
capacity C with utilization ρ. While this is a simplification
that allows the mathematical treatment of our paper, it is also
reasonable enough to capture the reality.

B. Energy Consumption Cost
In order to develop a model for the power consumption

of each CSP, we have again to take into account the multiple
servers of the CSP. According to state-of-the art literature [11],
the power consumption of a single server is linearly increasing
in its utilization factor, ρ = λ

μ . The power consumed is the sum
of idle and dynamic power consumption. The idle power W0

is the power consumed when the server is powered on and
does not serve any request. The dynamic power consumption
depends on the utilization ρ. If we denote by W1 the power
of the server when it is fully utilized (namely at ρ = 1), the
range of dynamic energy consumption is [0,W1 − W0]. The
total power consumption of the server as function of ρ is:

W (ρ) = W0 + (W1 −W0) ρ. (2)

Power consumption of a CSP. Now, we aim to show that
we can use the same type of power consumption function (i.e.
α + βρ) to model the total power consumption of a CSP.
The power consumption of a CSP i is the aggregate power
consumption of its servers. As we have already mentioned,
we assume that the CSP achieves the same average level of
utilization ρ in all its servers. Thus, the idle and dynamic power
consumption of the CSP are the corresponding aggregates of
power consumptions of all servers. If i has Mi servers, and if
W0,ij and W1,ij denote the idle and total power consumption
of the j-th server of i, the power consumption of the i is

Wi =

Mi∑
j=1

W0,ij +
λi

μi

Mi∑
j=1

(
W1,ij −W0,ij

)

= W0,i + (W1,i −W0,i)
λi

μi
,

(3)

where W0,i and W1,i denote the idle and total power con-
sumption of i’s infrastructure. Therefore, the single-server
model for the CSP also applies for the power consumption
too. Furthermore, given a price qi that CSP i should pay per
Watt·sec, the cost of energy consumption per unit of time is:

Ei = qiWi. (4)

C. QoS-dependent Pricing and CSP Profit
We reasonably assume that the CSP charges its clients

based on the load served and on the QoS-level offered, for
which we take the average execution delay per a task as
a proxy. The pricing function pi(·) of a CSP i should be
decreasing in the average delay di per job experienced by
its clients. Furthermore, it should also be convex, because a
marginal change of delay is perceived more by the client for
smaller values of the delay. A pricing function definition that
satisfies the above conditions is

pi(di) = xi e
−di/d

∗
, (5)

where xi denotes the price per job that i charges for offering
the service in the best possible level of QoS (ideally for di →
0), while d∗ is a parameter that specifies the sensitivity of the
price to QoS degradation. Assuming that all the requests that
arrive in the CSP’s queue are always executed, the revenue
rate in monetary units per unit of time for CSP i is

Ri = λi pi(di). (6)
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In practice, the pricing function for each CSP is also driven
by the competition in the market. In our approach, we assume
that each CSP has made a decision a priori on its pricing
function, taking also into account this competition. We assume
that CSPs do not change their pricing functions and also that
their clients are committed by some contract i.e. they do not
have the freedom to change their serving CSP.

D. CSP Profit
Considering both the revenue (cash inflow rate) and the

energy cost (cash outflow rate), the profit rate for CSP i is:

Pi = Ri − Ei. (7)

III. CSP FEDERATION POLICIES

A. Model
Our federation model has at its core the transfer of a portion

of the stream of requests from a CSP to other CSPs within the
federation. In order to demonstrate our approach, we restrict
our attention here to the case of two CSPs; the extension to
more CSPs is trivial. For each CSP i = 1, 2, we define a
variable αi (with 0 ≤ αi ≤ 1) that denotes the portion of the
stream of requests (of rate λi) from clients of CSP i that are
transferred to the other CSP. A federation policy is specified by
a pair (α1, α2). We assume that the requests transferred from
one CSP to the other experience an additional average delay
D. This models the delay introduced by the transfer process by
the intervening Internet links between servers of the two CSPs
and various other causes of delay in between. In this work, we
take D to be fixed and known by virtue of some measurement
process that has taken place before the federation.

Fig. 1: Federation scenario for two Cloud Service Providers, each modeled through an
M/M/1 queue. The job-request traffic that is transferred to the other CSP incurs a fixed
delay D that models the various causes of intermediate delays it experiences.

We assume that the jobs in both CSPs have the same mean
size in flop requirements L. Otherwise, due to the jobs from
clients of a CSP that migrate to the other CSP, the queue of
the destination CSP would have to support two classes of jobs
and the M/M/1 model would need to be extended.

The average arrival rate of requests transferred from CSP1

to CSP2 is α1λ1 and are fed in the queue of CSP2. Likewise,
the average arrival rate of requests that are transferred from
CSP2 to CSP1 is α2λ2 (Fig.1). Therefore, the total request
arrival rate at the input of the queue of CSP1 depends both

on α1 and α2 and is given by λ
′
1(α1, α2) =

(
1 − α1

)
λ1 +

α2λ2. Similarly, at the input of the queue of CSP2 we have
λ

′
2(α1, α2) =

(
1 − α2

)
λ2 + α1λ1. Consequently, the average

delay di of requests that are served by the queue of CSP i, is:

di(α1, α2) =
1

μi − λ
′
i(α1, α2)

. (8)

Hence, part of the arriving requests from each CSP’s clients
is served by that CSP’s own infrastructure, while another part
is served by the infrastructure of the other CSP. Therefore,
the average delay per job experienced by the clients of each
CSP depends on the average delays at both CSPs’ queues,
d1(α1, α2) and d2(α1, α2). Thus, the average delay per job Ti

experienced by clients of CSP i, for i = 1, 2 are given by:

T1(α1, α2) =
(
1− α1

)
d1(α1, α2) + α1

(
d2(α1, α2

)
+D)

T2(α1, α2) =
(
1− α2

)
d2(α1, α2) + α2

(
d1(α1, α2

)
+D).

(9)

Note the subtle difference between di(·) and Ti(·): while di(·)
denotes the average delay of any job served by the queue of
CSP i regardless of whether it originated from clients of CSP1

or CSP2, Ti(·) denotes the average delay of jobs originated
from clients of CSP i, regardless the server they are actually
served.

We now revisit the definitions of revenue and energy cost.
In the presence of federation, we re-define the power con-
sumption Wi(α1, α2), energy consumption cost Ei(α1, α2),
revenues Ri(α1, α2) and profit functions Pi(α1, α2) in order
to be applicable in the federation. The power consumption is

Wi(α1, α2) = W0,i +
(
W1,i −W0,i

)
ρi , (10)

where ρi =
λ
′
i(α1,α2)

μi
since λ

′
i(α1, α2) denotes the total

incoming request rate at the queue of CSP i that causes the
server utilization ρi. Thus, the energy cost per unit of time is

Ei(α1, α2) = qi Wi(α1, α2). (11)

Since the of jobs originated from clients of CSP i are served
in both CSPs, the pricing of the clients of CSP i should be
based on delay Ti(·) rather than on di(·). Therefore, the pricing
function becomes pi(α1, α2) = xie

−Ti(α1,α2)/d
∗
, and thus the

revenue rate of CSP i in a federation is

Ri(α1, α2) = λi pi(α1, α2). (12)

Finally, the profit rate of CSP i is

Pi(α1, α2) = Ri(α1, α2)− Ei(α1, α2). (13)

B. Cooperative Total Profit Maximization

We assume that the CSPs that participate in the federation
are fully cooperative. That is, each CSP abides to cooperation
rules that have been agreed a priori between the CSPs as to
their participation in the federation and the rules for sharing
the additional incurred profit of the federation (see below).
Therefore, the federated CSPs jointly decide on the best
possible request load transfer policy to each other, and each
CSP always serves requests from the clients of the other CSP.
The determination of the optimal federation strategy reduces to
solving an optimization problem. The output of this problem
is the optimal pair (α∗1, α

∗
2) of the portions of the job request

traffic at the input of each CSP queue that are routed to the
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other CSP, such that the total profit of federated CSPs is
maximized. The optimization problem is as follows:

max
α1,α2

P1(α1, α2) + P2(α1, α2)

s.t. 0 ≤ αi ≤ 1 , i = 1, 2

λ
′
i(α1, α2) < μi , i = 1, 2

The second constraint is due to stability in the queues of
each CSP, so that the rate of the stream of incoming requests
does not exceed the service rate of the CSP. If that constraint
were not included in the formulation, the delay would grow
unbounded. This is a non-linear optimization problem that
can be solved with standard methods, i.e. formation of the
Lagrangian and statement of the necessary and sufficient KKT
conditions that the pair (α1, α2) should satisfy for optimality.

We intuitively expect that the following properties apply
for the optimal solution of the problem above: For a given
D > 0, there exists a unique pair (α∗1,α∗2) that maximizes
the objective above, and for this optimal pair it should be
α∗1α

∗
2 = 0. Therefore, we always have unilateral service

delegation, i.e. at most one of the two CSPs transfers a portion
of its request load to the other. This is because the optimal
solution essentially entails an optimal load balancing , for
which unilateral shift of load suffices. However, if D = 0,
there exist in general multiple optimal solution pairs (a∗1, a

∗
2).

In particular, the solution can be succinctly described as a pair
(z(α∗2), α

∗
2), where z(·) is an increasing function.

Profit sharing. Our problem formulation guarantees that
the aggregate profit in the federation will be maximized,
however this is not the case for the individual profit of each
CSP, which may in fact deteriorate for one of them due to the
formation of federation. Thus, we propose a policy that splits
the profit among the CSPs in such a way that each of them has
at least the same or higher profit compared to the standalone
operation. In particular, the solution of the optimization prob-
lem leads to a total profit Ptot = P1(a

∗
1, a

∗
2) +P2(a

∗
1, a

∗
2) that

may exceed or be equal to the corresponding total profit of
CSPs if these were not involved in a federation. The latter
is attained for (a1, a2) = (0, 0) and thus can be written as
Ptot(0, 0) = P1(0, 0) + P2(0, 0).

If the federation is beneficial for the CSPs as a whole,
then the issue arises, how to share the profit incurred by
the federation. By incurred profit we mean the difference
Ptot(a

∗
1, a

∗
2)−Ptot(0, 0). Recall that under the optimal federa-

tion policy, load is delegated only to one CSP by the other. This
extra workload increases the energy consumption cost the CSP
to whom load is delegated, due to the higher utilization and
thus higher power consumption of its infrastructure. Therefore,
this CSP has reduced profits and may be unwilling to conform
to the federation, unless some rule is applied for compensating
it for these losses. Since the total profits of the federation
exceed those of the standalone case, the CSP that delegates
part of its workload definitely has higher profit than before.
This CSP should compensate the other for loss in profit. Thus,
the CSPs should reach an agreement for the sharing of the
additional profit that satisfies both of them. A cooperative
sharing policy that serves the above objective is one where
each CSP gets at least the profit it had in the no-federation
case, while the extra profit generated from federation is shared
according to some proportionality rule. If this rule concerns the
served request load, then CSP i gets profit. Thus, the payoff

that CSP i eventually obtains is given by

λ′i(α∗1, α
∗
2)

λ1 + λ2

(
Ptot(a

∗
1, a

∗
2)− Ptot(0, 0)

)
+ Pi(0, 0) , (14)

where the second term represents the profit of CSP i in the
standalone operation, while the first term is the share of the
extra profit induced by the federation that is given to CSP i.

C. Problem Generalization
In the general case of N CSPs, where N > 2, the

federation policy is defined as a N × N matrix A, whose
entries αij determine the percentage of job requests of traffic
of CSP i that is sent to CSP j. Consequently, the objective of
our optimization problem in the general case is to derive the
optimal matrix A that maximizes the total profit of the CSPs
while maintaining stability in the queue of each CSP. Thus,
extending our notation, we obtain the following problem:

max
A

N∑
i=1

Pi(A)

s.t. 0 ≤ αij ≤ 1 , i, j = 1, .., N

λ
′
i(A) < μi , i = 1, .., N
N∑
j=1

αij = 1 , i = 1, .., N

,where Pi(A) denotes the dependence of profit of CSP i on
matrix A.

IV. NUMERICAL RESULTS

We simulate an environment of two CSPs both in stan-
dalone and federated operation. Recall that by standalone we
mean that CSPs act in isolation from each other and serve
only their own clients. We assume that the average number of
processor flops L that a job requires in order to be completed
is the same for both CSPs and equals to 2. Regarding the
network delay D that models the average intermediate delay
experienced by a request that is transferred from one CSP to
the other, we assume that it is a small fraction of d1, d2. Thus,
we set D to be an order of magnitude lower than d1 and d2.

A. Symmetric CSPs
In the first set of experiments we assume that CSP1 and

CSP2 are symmetric with respect to their infrastructure C1 =
C2 = 20 flops/sec. For the power consumption of the servers
we take W0 = 300 MWatt and W1 = 1000 MWatt. We also
assume that both CSPs pay the same price, namely q = 15
$/MWatt·hour to their electricity provider, while they charge
their clients according to the same pricing function, with the
same maximum price x $/job when di → 0 and sensitivity
parameter d∗ = 1 sec. In our experiments, we select the value
of x taking as input the electricity price q. In particular, given
the price q we find the value of x for which the profit of CSP
becomes zero when the utilization factor approaches 1. This
guarantees that both CSPs in standalone operation will not
have negative profit under any value of utilization ρ. Next, we
assume that the CSP2 has fixed rate of incoming requests λ2

and we set values for λ1 in the range of values for which the
queues of both CSPs are stable (there should apply Ci

L > λi),
from 1 to 9.9 with a step of 0.1. We run this type of experiment
for different fixed values of λ2 from 1 to 9.9.

The results in Fig. 2 show that for λ2 = 9 and for low
to medium load λ1, federation leads to 50-100% more total
profit compared to the case when each CSP serves its own
clients. The benefits of the federation are seen to diminish as
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Fig. 2: Maximum total profit of federation for λ2 = 9 and λ1 ∈ [1, 9.9].

λ1 tends to λ2. In the case where both CSP input loads are
equal (λ2 = λ1 = 9) the profit of the federation vanishes.
These results provide valid guidelines for when a federation
is most profitable. That is, the more diverse the input loads
are, the more pronounced the benefit of the federation is.This
should have been intuitively expected, because for two CSPs
with the same computational capacity the optimal federation
tends to balance their loads.

In Fig. 3 we provide results for the average delay. For
the average delay of clients of federated CSPs, it is shown
that the optimal federation policy achieves an average delay
that coincides or is close to the optimal average delay with
respect to a QoS-based federation policy, namely the optimal
policy when the objective function of the optimization problem
includes only the delay.

Fig. 3: Average delay of all clients in the environment of two CSPs under different
policies.

In Fig.4, we can observe that in the solution of the opti-
mization problem that gives the optimal federation policy, at
least one of α1 and α2 equals to zero, while the non-zero value
always refers to the most utilized CSP. Our results confirm the
unilateral service property we discuss in section III-B.

Fig. 4: Optimal pairs (α1, α2) that denote the portions of request traffic transferred from
one CSP to the other, for λ2 = 9 and λ1 ∈ [1, 9.9].

Moreover, the results in Fig. 5 show that as the intermediate
delay D increases, the CSPs follow a more conservative
job transfer strategy, and when D exceeds a certain high
value, both α∗1 and α∗2 becomes zero. Consequently, as D
increases, the effectiveness of federation decreases, and thus

the maximum total profit decreases and after a certain value
the total profit is maximized when the CSPs do not federate.

Fig. 5: Optimal pairs (α1, α2) that denote the portions of request traffic transferred from
one CSP to the other as a function of D, for λ1 = 1 and λ2 = 9. Note that α2 = 0.

B. Asymmetric CSPs
Asymmetric infrastructure - symmetric pricing. We run

the same type of experiments for asymmetric CSPs with
respect to their infrastructure, i.e. C1 �= C2. Since we assume
that the power consumption of servers is related to their
processing power, the CSPs are also asymmetric with respect
to their power consumption. Therefore, we consider three
different values of CSP dimensioning and the related power
consumption, namely C = {10, 20, 40} and (W0,W1) =
{(300, 1000), (600, 2000), (1200, 4000)}. Then, we try all pos-
sible combinations of elements in the sets above for CSP1 and
CSP2. The results reveal that the parameter that affects more
the effectiveness of federation is again the utilization factor of
the infrastructure of each CSP. Also, when the largest CSP has
a high utilization factor and the other has a low to medium
utilization factor, the federation can achieve higher benefit than
in the opposite case of asymmetric CSPs. However, for both
cases of asymmetric CSPs, forming a federation is in general
more beneficial than for symmetric CSPs.

Asymmetric infrastructure and pricing. We also run a set
of experiments for symmetric infrastructure, but now we as-
sume that the energy prices qi and the maximum prices per job
xi of the two CSPs are asymmetric. In particular we consider
three different values of electricity price qi ∈ {5, 10, 15} and
we assign all possible pairs of them to two identical CSPs
together with the xi’s produced from them. In the case where
utilization factors of the CSPs differ significantly, it is shown
that when the highly utilized CSP is the one with the highest
value of xi, the benefit of federation is higher and the portion
of requests that are outsourced increase up to 25% compared
to the case of symmetric pricing. On the other hand, when the
CSP with the lowest utilization has the highest xi, the benefits
and the portion of outsourced requests decrease to 25%. The
effect of price asymmetry is less pronounced when the CSPs
have the same utilization level.

V. RELATED WORK

Cloud federation concept. The authors in [6] propose
the reservoir model, a modular cloud architecture that allows
multiple CSPs to pool their resources in order to provide
services as a federation of CSPs. In [9] the architectural
elements of a service-oriented, market-based architecture of
cloud federation among IaaS CSPs is presented. The basic
entities of the architecture are a cloud broker (buyer) per client,
a cloud coordinator (seller) per CSP and a cloud exchange
as the market maker. Finally, in [7] a definition of the cloud
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federation as a concept of service aggregation is suggested,
focusing on two types of federation, the redundancy and the
migration federations. The former is used when more than one
CSPs offering a service together are able to achieve better
utility than any single CSP, while the migration federation is
triggered when a CSP offering a new service achieves better
utility for the client than any previously used service of another
cloud provider (or federation), and thus the job should migrate
from the old service to the new one.

Resource allocation in distributed or federated clouds.
A class of published works deal with the resource allocation
in geographically distributed CSPs or federated environments
of CSPs. In [12] the authors design algorithms for inter-
cloud resource trading and scheduling in a federation of
geo-distributed clouds, by applying a double-auction based
mechanism. In [13] and [14] cloud federation formation is
modeled as a coalitional game where CSPs dynamically decide
to form a cloud federation and to allocate Virtual Machines
(VMs) based on their clients’ requests. Additionally, in [14]
an energy-aware mechanism coping with hosts and their energy
consumption is proposed.

In [15] the authors investigate the distributed VM resource
allocation problem in dynamic cloud federation platforms,
where IaaS CSPs are at the same time buyers and sellers of
computational resources. A Stackelberg game is presented in
[10]; the game is between the Application Service Providers
(followers) that aim at optimizing their offered QoS and the
CSPs (leaders) that set prices of resources to maximize their
own benefit. In [16], the cloud federation is presented as a solu-
tion to the problem of resource provisioning in the presence of
large workload variations. A global scheduler is proposed with
the goal to maximize the CSPs’ utility by deciding between
VM migration or VM shutdown. Finally, the authors of [17]
consider an environment of multiple CSPs where each CSP
maintains a number of heterogeneous servers and model each
server as a queueing system. Then, they formulate the problem
of resource provisioning and management among different
CSPs as a game among rational CSPs that aim to maximize
their own profit taking into account the SLA agreements.

Some of the works above provide an overview of the
architectural elements of a system that will enable the federated
operation of multiple CSPs. In our work on the other hand,
we develop an economic model of the federated environment
of CSPs and we investigate profit-based optimal federation
formation policies. Further, most of existing works on resource
allocation do not take into account the QoS offered to CSPs’
clients in their optimization approach. In our work, the feder-
ation policy is optimal with respect to total CSPs’ profit, but
it is also beneficial and caters for client utility, since a better
QoS for clients leads to higher revenue for the CSP.

VI. CONCLUSIONS

In this paper, we provide the economic modeling and
the policies for the formation of profitable service-oriented
cloud federations. The results show that the formation of the
optimal federation increases the profit of the CSPs that join the
federated environment and it achieves a QoS that approaches
the optimal one. The key factor that federation takes advan-
tage of is the utilization factor of CSPs, but federation can
achieve further benefits by taking advantage of asymmetries
in infrastructure such as the computational capacity Ci or in
pricing, i.e. different prices charged. In this work we adhered

to a cooperative formulation in an effort to quantify the benefits
of the system of federated CSPs that emerge from the solution
of the optimization problem. The cooperative case is actually
in the core of federation, and that is why we address it first. Our
main objective was to expose the model, hence we started with
the case of two CSPs, which is also likely to occur in reality.
The transfer of our theory to the case of more than two CSPs
requires certain extensions, particularly in designing modes of
profit sharing; we intend to address this case in our future
work. Finally, given that each CSP is a selfish entity, we have
also considered the profits and incentives of each individual
CSP. However, several other interesting game-theoretic aspects
arise, which we plan to address in the future.
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