
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Maintaining Trustworthiness of

Socio-Technical Systems at Run-Time

Nazila Gol Mohammadi
1
, Torsten Bandyszak

1
, Micha Moffie

2
, Xiaoyu Chen

3
,

Thorsten Weyer
1
, Costas Kalogiros

4
, Bassem Nasser

3
, and Mike Surridge

3

1paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen, Germany
2IBM Research, Haifa, Israel

3IT-Innovation Center, School of Electronics and Computer Science,

University of Southampton, Southampton, United Kingdom
4Athens University of Economics and Business, Athens, Greece
{nazila.golmohammadi, torsten.bandyszak,

thorsten.weyer}@paluno.uni-due.de, moffie@il.ibm.com,

{wxc, bmn, ms}@it-innovation.soton.ac.uk, ckalog@aueb.gr

Abstract. Trustworthiness of dynamical and distributed socio-technical systems

is a key factor for the success and wide adoption of these systems in digital

businesses. Different trustworthiness attributes should be identified and ac-

counted for when such systems are built, and in order to maintain their overall

trustworthiness they should be monitored during run-time. Trustworthiness

monitoring is a critical task which enables providers to significantly improve

the systems’ overall acceptance. However, trustworthiness characteristics are

poorly monitored, diagnosed and assessed by existing methods and technolo-

gies. In this paper, we address this problem and provide support for semi-

automatic trustworthiness maintenance. We propose a trustworthiness mainte-

nance framework for monitoring and managing the system’s trustworthiness

properties in order to preserve the overall established trust during run time. The

framework provides an ontology for run-time trustworthiness maintenance, and

respective business processes for identifying threats and enacting control deci-

sions to mitigate these threats. We also present use cases and an architecture for

developing trustworthiness maintenance systems that support system providers.

Keywords: Socio-Technical Systems, Trustworthiness, Run-time Maintenance

1 Introduction

Humans, organizations, and their information systems are part of Socio-Technical

Systems (STS) as social and technical components that interact and strongly influence

each other [3]. These systems, nowadays, are distributed, connected, and communi-

cating via the Internet in order to support and enable digital business processes, and

thereby provide benefits for economy and society. For example, in the healthcare

domain, STS enable patients to be medically supervised in their own home by care

providers [18]. Trust underlies almost every social and economic relation. However,

the end-users involved in online digital businesses generally have limited information

about the STS supporting their transactions. Reports (e.g., [8]) indicate an increasing

mailto:thorsten.weyer%7d@paluno.uni-due.de
mailto:moffie@il.ibm.com
mailto:ckalog@aueb.gr

number of cyber-crime victims, which leads to massive deterioration of trust in cur-

rent STS (e.g., w.r.t. business-critical data). Thus, in the past years, growing interest

in trustworthy computing has emerged in both research and practice.

Socio-technical systems can be considered worthy of stakeholders’ trust if they

permit confidence in satisfying a set of relevant requirements or expectations (cf. [2]).

A holistic approach towards trustworthiness assurance should consider trustworthi-

ness throughout all phases of the system life-cycle, which involves: 1) trustworthi-

ness-by-design, i.e., applying engineering methodologies that regard trustworthiness

to be built and evaluated in the development process; and 2) run-time trustworthiness

maintenance when the system is in operation. Stakeholders expect a system to stay

trustworthy during its execution, which might be compromised by e.g. security at-

tacks or system failures. Furthermore, changes in the system context may affect the

trustworthiness of an STS in a way that trustworthiness requirements are violated.

Therefore it is crucial to monitor and assure trustworthiness at run-time, following

defined processes that build upon a sound theoretical basis.

By studying existing approaches that address maintaining STS trustworthiness at

run-time, we identified a lack of generally applicable and domain-independent con-

cepts. In addition, existing frameworks and technologies do not appropriately address

all facets of trustworthiness. There is also insufficient guidance for service providers

to understand and conduct maintenance processes, and to build corresponding tools.

We seek to go beyond the state-of-the-art of trustworthiness run-time maintenance by

establishing a better understanding of key concepts for measuring and controlling

trustworthiness at run-time, and by providing guidance to operate and maintain STS

in a trustworthy manner, supported by tools.

The contribution of this paper consist of three parts: First, we introduce a domain-

independent ontology that describes the key concepts of our approach. Second, we

propose business processes for monitoring, measuring, and managing trustworthiness,

as well as mitigating trustworthiness issues at run-time. Third, we present use cases

and an architecture for trustworthiness maintenance systems that are able to facilitate

the processes using fundamental concepts of autonomous systems.

The remainder of this paper is structured as follows: In Section 2 we describe the

fundamentals w.r.t. trustworthiness of STS and the underlying runtime maintenance

approach. Section 3 presents the different parts of our approach, i.e., an ontology for

run-time trustworthiness of STS, respective business processes, as well as use cases

and a an architecture for trustworthiness maintenance systems that support STS pro-

viders. In Section 4, we briefly discuss the related work. We conclude this paper with

a summary and a brief discussion of our ongoing research activities in Section 5.

2 Fundamentals

In this section, we present the fundamental concepts that form the basis for our ap-

proach. First, we present our notion of trustworthiness related to STS. Then, we brief-

ly introduce the concept of run-time maintenance in autonomic systems.

2.1 Trustworthiness of Socio-Technical Systems

The term “trustworthiness” is not consistently used in the literature, especially with

respect to software. Some approaches merely focus on single trustworthiness charac-

teristics. However, even if combined, these one-dimensional approaches are not suffi-

cient to capture all kinds of trustworthiness concerns for a broad spectrum of different

STS, since the conception of trustworthiness depends on a specific system’s context

and goals [1]. For example, in safety-critical domains, failure tolerance of a system

might be prioritized higher than its usability. In case of STS, we additionally need to

consider different types of system components, e.g. humans or software assets [3].

Trustworthiness in general can be defined as the assurance that the system will per-

form as expected, or meets certain requirements [2]. With a focus on software trust-

worthiness, we adapt the notion of trustworthiness from [1], which covers a compre-

hensive set of quality attributes (e.g., availability or reliability). This allows us to

measure overall trustworthiness as the degrees to which relevant quality attributes

(then referred to as trustworthiness attributes) are satisfied. To this end, metrics for

objectively measuring these values can be defined, as shown in [19].

2.2 Run-time Maintenance in Autonomic Computing

Our approach for maintain trustworthiness at run-time is mainly based on the vision

of Autonomic Computing [6]. The goal of Autonomic Computing is to design and

develop distributed and service-oriented systems that can easily adapt to changes

which affect the system administration and service delivery, while alleviating some of

the complexities associated in managing these systems. Considering assets of STS as

managed elements of an autonomic system allows us to apply the concepts of Auto-

nomic Computing to trustworthiness maintenance. MAPE-K (Monitor, Analyze, Plan,

Execute, and Knowledge) is a reference model for control loops used in Autonomic

Computing with the objective of supporting the concepts of self-management, specifi-

cally: self-configuration, self-optimization, self-healing, and self-protection [5, 6].

Fig. 1 shows the elements of an autonomic system: the control loop activities, sensor

and effector interfaces, and the system being managed.

Fig. 1. Autonomic Computing and MAPE-K Loop

The Monitor provides mechanisms to collect events from the system. It is also able to

filter and aggregate the data, and report details or metrics [5]. To this end, system-

specific Sensors provide interfaces for gathering required monitoring data, and can

also raise events when the system configuration changes [5]. Analyze provides the

means to correlate and model the reported details or measures. It is able to handle

complex situations, learns the environment, and predicts future situations. Plan pro-

vides mechanisms to construct the set of actions required to achieve a certain goal or

objective or respond to a certain event. Execute offers the mechanisms to realize the

actions involved in a plan, i.e., to control the system by means of Effectors which

modify the managed element [6]. A System is a managed element (e.g., software) that

contains resources and provides services. Here, managed elements are assets of STS.

Additionally, a common Knowledge base acts as the central part of the control loop,

and is shared by the activities to store and access collected and analyzed data.

3 A Framework for Maintaining Trustworthiness of Socio-

Technical Systems at Run-Time

This section presents our approach for maintaining STS trustworthiness at run-time.

We describe a framework that consists of the following parts: 1) an ontology that

provides general concepts for run-time trustworthiness maintenance, 2) processes for

monitoring and managing trustworthiness, 3) functional use cases of a system for

supporting the execution of these processes, and 4) a reference architecture that

guides the development of such maintenance systems. Based on the ontology and

processes, we provide guidance for developing supporting maintenance systems (i.e.,

use cases and reference architecture). The reference architecture is furthermore based

on MAPE-K (see Section 2.2), which, in principle allows for realizing automated

maintenance. However, our approach focuses on semi-automatic trustworthiness

maintenance, which involves decisions taken by a human system operator. In the next

subsections, we elaborate on the elements of the framework in detail.

3.1 Ontology for Run-Time Trustworthiness Maintenance

This section outlines the underlying ontology on which the development of run-time

trustworthiness maintenance is based. Rather than focusing on a specific domain, our

approach provides a meta-model that abstracts concrete system characteristics, in such

a way that it can be interpreted by different stakeholders and applied across disci-

plines. Fig. 2 illustrates the key concepts of the ontology and their interrelations.

The definition of qualitative trustworthiness attributes forms the basis for identify-

ing the concepts, since they allow for assessing the trustworthiness of a great variety

of STS. However, trustworthiness attributes are not modelled directly; instead they

are encoded implicitly using a set of quantitative concepts. The core elements abstract

common concepts that are used to model trustworthiness of STS, while the run-time

concepts are particularly required for our maintenance approach.

Trustworthiness attributes of Assets, i.e., anything of value in an STS, are concre-

tized by Trustworthiness Properties that describe the system’s quality at a lower ab-

straction level with measurable values of a certain data type, e.g., the response time

related to a specific input, or current availability of an asset. These properties are

atomic in the sense that they refer to a particular system snapshot in time. The relation

between trustworthiness attributes and properties is many to many; an attribute can

potentially be concretized by means of multiple properties, whereas a property might

be an indicator for various trustworthiness attributes. Values of trustworthiness prop-

erties can be read and processed by metrics in order to estimate the current levels of

trustworthiness attributes. A Metric is a function that consumes a set of properties and

produces a measure related to trustworthiness attributes. Based on metrics, statements

about the behavior of an STS can be derived. It also allows for specifying reference

threshold values captured in Trustworthiness Service-Level Agreements (TSLAs).

Fig. 2. Ontology for Run-Time Trustworthiness Maintenance

A system’s behavior is observed by means of Events, i.e., induced asset behaviors

perceivable from interacting with the system. Events can indicate either normal or

abnormal behavior, e.g., underperformance or unaccountable accesses. Misbehavior

observed from an event or a sequence of events may manifest in a Threat which un-

dermines an asset’s value and reduces the trustworthiness of the STS. This in turn

leads to an output that is unacceptable for the system’s stakeholders, reducing their

level of trust in the system. Given these consequences, we denote a threat “active”.

Threats (e.g., loss of data) can be mitigated by either preventing them from becoming

active, or counteracting their effects (e.g., corrupted outputs). Therefore, Controls

(e.g., service substitution) are to be executed. Control Rules specify which controls

can block or mitigate a given type of threat. Identifying and analyzing potential

threats, their consequences, and adequate controls is a challenging task, which should

be started in early requirements phases.

3.2 Processes for Run-Time Trustworthiness Maintenance

In order to provide STS providers with concrete guidance for realizing trustworthiness

maintenance, we define two complementary reference processes, i.e., Trustworthiness

Monitoring and Management. These processes illustrate the utilization of the ontology

concepts. We denote them as “reference processes” since they provide a high-level

view on the activities that need to be carried out in order to implement trustworthiness

maintenance, without considering system-specific characteristics. Our approach is

designed to be semi-automatic, i.e., we assume a human maintenance operator to be

consulted for taking critical decisions.

Trustworthiness Monitoring. Monitoring is responsible for observing the behav-

ior of STS in order to identify and report potential threats to the Management, which

will then analyze the STS state and enact corrective actions, if necessary. In general,

our monitoring and measuring approach is based on metrics which allow for quantify-

ing the current value of relevant trustworthiness attributes. The reference process for

trustworthiness monitoring is shown in the BPMN diagram depicted in Fig. 3.

Fig. 3. Process of Trustworthiness Monitoring

According to our modelling ontology, each measure is based on collected data, called

atomic properties. Thus, the first step involves collecting all relevant trustworthiness

properties (e.g., indicating system usage). These can be either 1) system properties

that are necessary to compute the metrics for the set of relevant trustworthiness attrib-

utes, or 2) system topology changes, such as the inclusion of a new asset. Atomic

system events indicate changes of properties. For each system asset, trustworthiness

metrics are computed. Having enough monitoring data, statistical analysis can be used

for aggregating atomic measurements into composite ones, e.g., the mean response

time of an asset. These measures and further processed in order to identify violations

of trustworthiness requirements that are captured in user-specific TSLAs. For each

trustworthiness metrics, it is observed whether the required threshold(s) are exceeded.

If so, the critical assets are consequently reported to the management, so that poten-

tially active threats can be identified and mitigation actions can be triggered.

Each STS has its individual characteristics and requirements for trustworthiness.

At run-time, system characteristics may change, e.g., due to adaptations to the envi-

ronment. Consequently, another important monitoring task is to accept change notifi-

cations from the STS, and forward them to the trustworthiness management.

Trustworthiness Management. The key objective of STS trustworthiness man-

agement (see Fig. 4) is to guarantee correct system and service behavior in real-time

by continuously analyzing system behavior, identifying potential threats, recommend-

ing and executing possible mitigation actions.

The reference management process is triggered by incoming events (i.e., misbe-

haviors or system changes) reported by the trustworthiness monitoring. Misbehaviors

identified in the form of deviations from required trustworthiness levels indicate an

abnormal status of the target STS, e.g., underperformance due to insufficient re-

sources, or malicious attacks. The management keeps tracks of the system status over

time, and analyzes the causes of misbehaviors. Once threats are classified, it is neces-

sary to analyze their effect on the asset’s behavior and understand the links between

them in order to analyze complex observations and sequences of threats that may be

active, and identify suitable controls. Statistical reasoning is necessary for estimating

threat probabilities (for each trustworthiness attribute).

Fig. 4. Process of Trustworthiness Management

Regarding control selection and deployment, we focus on semi-automated control

deployment, as illustrated in Fig. 4, which requires human intervention. The system

operator is notified whenever new threats are identified. These threats may be active,

indicating vulnerabilities due to lacking of necessary controls. Each threat is given a

likelihood based on the observed system behaviors. It is then the system operator’s

responsibility to select appropriate controls that can be applied to the STS in order to

realize mitigation. These controls involve, e.g., authentication or encryption. A num-

ber of control instances may be available for each control (e.g., different encryption

technologies), having different benefits and costs. Based on cost-effective recommen-

dations, the operator can select control instance to be deployed. As a consequence,

previously identified active threats should be classified as blocked or mitigated. Note

that we do not provide a separate mitigation process, since the actual mitigation exe-

cution is rather a technical issue that does not involve complex logic.

The system may be dynamic, i.e., components can be added or removed. Whenever

a notification arrives that the topology of the system has changed, the management

process is carried out again.

3.3 Use Cases of a Run-Time Trustworthiness Maintenance System

Based on the reference processes introduced in Section 3.2, we elicited functional

requirements of a tool that supports STS providers in maintaining trustworthiness.

Such a system is supposed to facilitate and realize the business processes in a semi-

automatic manner. We distinguish three main areas of functionality, i.e., Monitoring,

Management, and Mitigation. The latter is included for a better separation of con-

cerns, although we did not define a separate reference process for mitigation. We

analyzed possible maintenance use cases, and actors that interact with the system. The

results of this analysis are shown in the UML use case diagram in Fig. 5.

Fig. 5. Trustworthiness Maintenance Use Cases

The Monitoring functionality is responsible for collecting events and properties from

the system (measuring the STS) and computing metrics. The inputs to the component

are system properties and atomic events that are collected from the STS. The output,

i.e., measures, is provided to the Management. The maintenance operator (e.g., the

service provider) is able to start and stop the measurement, and to configure the moni-

tor. Specifically, the operator can utilize the concept of trustworthiness requirements

specified in TSLAs (cf. Section 3.1) to derive appropriate configuration.

The Management part provides the means to assess current trustworthiness attrib-

utes using the metrics provided from monitoring, choose an appropriate plan of action

(if needed) and forward it to the mitigation. The operator is able to configure the

Management component and provides a list of monitor(s) from which measures

should be read, a list of metrics and trustworthiness attributes that are of interest, as

well as management processes. Additionally, the operator is able to start/stop the

management process, retrieve trustworthiness metric values, and to generate reports

which contain summaries of trustworthiness evolution over time.

Lastly, the Mitigation part has one main purpose – to control the STS assets by re-

alizing and enforcing mitigation actions, i.e., executing controls to adjust the trustwor-

thiness level. The maintenance operator will configure the service with available mit-

igation actions and controls that are to be executed by means of effectors.

3.4 Architecture for Run-Time Trustworthiness Maintenance Systems

We view the trustworthiness maintenance system as an autonomic computing system

(see Section 2.2). The autonomic system elements can be mapped to three mainte-

nance components, similar to the distribution of functionality in the use case diagram

in Fig. 5. The Monitor and Mitigation components are each responsible for a single

functionality - monitoring and executing controls. Analyze and plan functionalities

are mapped to a single management package, since they are closely related, and in

order to simplify the interfaces. Fig. 6 shows the reference architecture of a mainte-

nance system as a UML component diagram, depicting the components that are struc-

tured in three main packages Monitor, Management and Mitigation.

Fig. 6. Reference System Architecture for Run-Time Trustworthiness Maintenance

Trustworthiness maintenance systems are designed around one centralized manage-

ment component and support distributed monitoring and mitigation. This modular

architecture enables instantiating multiple monitors on different systems, each report-

ing to a single centralized management. Likewise, Mitigation can be distributed

among multiple systems, too. This allows for greater scalability and flexibility.

Monitor. The Monitor package contains three components. The Monitor compo-

nent provides an API to administer and configure the package, while the Measure-

ment Producer is responsible for interfacing with the STS via sensors. The latter sup-

ports both passive sensors listening to events, as well as active sensors that actively

measure the STS (e.g., to check if the system is available). Hence, the STS-specific

event capturing implementation is decoupled from the more generic Measurement

Processing component which gathers and processes all events. It is able to compute

metrics and forward summarized information to the management. In addition, it may

adjust the processes controlling the sensors (e.g., w.r.t. frequency of measurements).

One way to implement the Monitor component is using an event-based approach

like Complex Event Processing (CEP) [4]. CEP handles events in a processing unit in

order to perform monitor activities, and to identify unexpected and abnormal situa-

tions at run-time. This offers the ability of taking actions based on enclosed infor-

mation in events about the current situation of an STS.

Management. The Management package is responsible for gathering all infor-

mation from the different monitors, store it, analyze it, and find appropriate plans to

execute mitigation controls. It contains Monitor and Mitigation adapters that allow

multiple monitors or mitigation packages to interact with the management, and pro-

vide the reasoning engine with unified view of all input sources and a single view of

all mitigation packages. It also includes the Management administration component

that is used to configure all connected Monitor and Mitigation packages, and exposes

APIs for configuration, display and report generation. The central component, the

Reasoning Engine, encapsulates all the logic for the analysis of the measurements and

planning of actions. This allows us to define an API for the engine and then replace it

with different engines. Internally, an instance of the Reasoning Engine contains Anal-

ysis and Plan components as expected from an autonomic computing system (cf. Sec-

tion 2.2), as well as an Ontology component. The ontology component encapsulates

all required system models, which define e.g. threats and attributes. This allows for

performing semantic reasoning by executing rules against the provisional system

status and, estimating the likelihood of threat activeness (e.g., vulnerabilities) based

on the current monitoring state. Given active threats, the management can instruct the

mitigation component what action(s) to perform in order to restore or maintain STS

trustworthiness, based on decisions taken by the operator.

Mitigation. The Mitigation package contains a Control component that encapsu-

lates all interaction with the STS, and a Mitigation administration component. This

allows us to separate and abstract STS control details, mitigation configuration and

expose a generic API. The Mitigation package is responsible for executing mitigation

actions by means of appropriate STS-specific effectors. These actions may be com-

plex such as deploying another instance of the service, or as simple as presenting a

warning to the operator including information for him to act on.

4 Related Work

Related work can be found in several areas, since trustworthiness of STS comprises

many disciplines, especially software development. For example, methodologies for

designing and developing trustworthy systems, such as [2], focus on best practices,

techniques, and tools that can be applied at design-time, including the trustworthiness

evaluation of development artifacts and processes. However, these trustworthiness-

by-design approaches do not consider the issues related to run-time trustworthiness

assessment. Metrics as a means for quantifying software quality attributes can be

found in several publications, e.g. related to security and dependability [9], personali-

zation [10], or resource consumption [11].

The problem of trustworthiness evaluation that we address has many similarities

with the monitoring and adaption of web services in Service-Oriented Architectures,

responding to the violation of quality criteria. Users generally favor web services that

can be expected to perform as described in Service Level Agreements. To this end,

reputation mechanisms can be used (e.g., [12]). However, these are not appropriate

for objectively measuring trustworthiness based on system characteristics. In contrast,

using online monitoring approaches, analyses and conflict resolution can be carried

out based on logging the service interactions. Online monitoring can be performed by

the service provider, service consumer, or trusted third parties [13, 14]. The

ANIKETOS TrustWorthinessModule [15] allows for monitoring the dependability of

service-oriented systems, considering system composition as well as specific compo-

nent characteristics. Zhao et al. [7] also consider service composition related to avail-

ability, reliability, response time, reputation, and security. Service composition plays

an important role in evaluation, as well as in management. For example, in [15] sub-

stitution of services is considered as the major means of restoring trustworthiness.

Decisions to change the system composition should not only consider system qualities

[17], but also related costs and profits [15, 11]. Lenzini et al. [16] propose a Trustwor-

thiness Management Framework in the domain of component-based embedded sys-

tems, which aims at evaluating and controlling trustworthiness, e.g., w.r.t. dependabil-

ity and security characteristics, such as CPU consumption, memory usage, or pres-

ence of encryption mechanisms. Conceptually, their framework is closely related to

ours, since it provides a software system that allows for monitoring multiple quality

attributes based on metrics and compliance to user-specific trustworthiness profiles.

To summarize, there are no comprehensive approaches towards trustworthiness

maintenance, which consider a multitude of system qualities and different types of

STS. There is also a lack of a common terminology of relevant run-time trustworthi-

ness concepts. Furthermore, appropriate tool-support for enabling monitoring and

management processes is rare. There is insufficient guidance for service providers to

understand and establish maintenance processes, and to develop supporting systems.

5 Conclusion and Future Work

Maintaining trustworthiness of STS at run-time is a complex task for service provid-

ers. In this paper, we have addressed this problem by proposing a framework for

maintaining trustworthiness. The framework is generic in the sense that it is based on

a domain-specific ontology suitable for all kinds of STS. This ontology provides key

concepts that are valuable for understanding and addressing run-time trustworthiness

issues. Our framework defines reference processes for trustworthiness monitoring and

management, which guide STS providers in realizing run-time maintenance. As the

first step towards realizing trustworthiness maintenance processes in practice, we

presented results of a use case analysis, in which high-level functional requirements

of maintenance systems have been elicited, as well as a general architecture for such

systems.

We are currently in the process of developing a prototype of a trustworthiness

maintenance system that implements our general architecture. Therefore, we will

define more concrete scenarios that will further detail the abstract functional require-

ments presented herein, and also serve as a reference for validating the system in or-

der to show the applicability of our approach. We also aim at extending the frame-

work and the maintenance system by providing capabilities to monitor and maintain

the user’s trust in the STS. The overall aim is to balance trust and trustworthiness, i.e.,

to prevent unjustified trust, and to foster trust in trustworthy systems. To some extent,

trust monitoring and management may be based on monitoring trustworthiness as

well, since some changes of the trustworthiness level are directly visible to the user.

Though additional concepts and processes are needed, we designed our architecture in

a way that allows for easily expanding the scope to include trust concerns.

References

1. Gol Mohammadi, N., Paulus, S., Bishr, M., Metzger, A., Koennecke, H., Hartenstein, S.,

Pohl, K.: An Analysis of Software Quality Attributes and Their Contribution to Trustwor-

thiness. In: 3rd Int. Conference on Cloud Computing and Service Science, Aachen (2013)

2. Amoroso, E., Taylor, C., Watson, J., Weiss, J.: A Process-Oriented Methodology for As-

sessing and Improving Software Trustworthiness. In: 2nd ACM Conference on Computer

and Communications Security, pp. 39-50. ACM, New York (1994)

3. Sommerville, I.: Software Engineering, 9th edition. Pearson, Boston (2011)

4. Luckham, D.: The Power of Events – An Introduction to Complex Event Processing in

Distributed Enterprise Systems”. Addison-Wesley (2002)

5. IBM: An Architectural Blueprint for Autonomic Computing, Autonomic Computing,

White paper, IBM (2003)

6. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer, Vol.

36, Issue 1 , 41-50 (2003)

7. Zhao, S., Wu, G., Li, Y., Yu, K.: A Framework for Trustworthy Web Service Manage-

ment. In: 2nd Int. Symp. on Electronic Commerce and Security, pp. 479-482. IEEE (2009)

8. Computer Security Institute: 15th Annual 2010/2011 Computer Crime and Security Survey.

Technical Report, Computer Security Institute (2011)

9. Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the Scalability of a Large Web

Based Shopping System, ACM Trans. on Internet Tech., Vol. 1, No. 1, 44–69 (2001)

10. Bassin, K., Biyani, S., Santhanam, P: Metrics to Evaluate Vendor-developed Software

based on Test Case Execution Results, IBM Systems Journal, Software Testing and Verifi-

cation, Volume 41, Number 1, 13-30 (2002)

11. Zivkovic, M., Bosman, J.W., van den Berg, J.L., van der Mei, R.D., Meeuwissen, H.B.,

Nunez-Queija, R.: Dynamic Profit Optimization of Composite Web Services with SLAs."

Global Telecom. Conference (GLOBECOM), pp. 1-6. IEEE (2011)

12. O. Rana, M.E. Warnier, T.B. Quillinan and F.M.T Brazier. Monitoring and Reputation

Mechanisms for Service Level Agreements. In: 5th Int. Workshop on Grid Economics and

Business Models (GenCon), pp. 125-139. Springer, Berlin Heidelberg (2008)

13. Clark, K., Warnier, M., Quillinan, T., Brazier, F.: Secure Monitoring of Service Level

Agreements. In: 5th Int. Conference on Availability, Reliability, Security, pp. 454-461,

IEEE (2010)

14. Quillinan, T., Clark, K., Warnier, M, Rana, O., Brazier, F.: Negotiation and Monitoring of

Service Level Agreements. In: Wieder, P., Yahyapour, R., Ziegler, W. (eds.) Grids and

Service-Oriented Architectures for Service Level Agreements, pp. 167-176. Springer, Ber-

lin Heidelberg (2010)

15. Elshaafi, H., McGibney, J., Botvich, D: Trustworthiness Monitoring and Prediction of

Composite Services. In: IEEE Symp. on Computers and Comm., pp. 000580–000587.

IEEE (2012)

16. Lenzini, G., Tokmakoff, A., Muskens, J.: Managing trustworthiness in component-based

embedded systems. Electronic Notes in Theoretical Computer Science 179, 143–155.

Elsevier (2007)

17. Yu, T., Zhang, Y., Lin, K.: Efficient Algorithms for Web Services Selection with End-to-

End QoS Constraints, ACM Trans. on the Web (TWEB), Vol. 1, Issue 1, 1-26 (2007)

18. OPTET Consortium: D8.1 – Description of Use Cases and Application Concepts. Tech-

nical Report, OPTET Project (2013)

19. OPTET Consortium: D6.2 – Business Process Enactment for Measurement and Manage-

ment. Technical Report, OPTET Project (2013)

