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Abstract—Automated Demand Response (ADR) can facilitate
residential customers to effectively reduce their energy demand
and make savings in a simple way, provided that appropriate
incentives are offered to them. Most often, incentives involved in
ADR contracts are statically defined and assume full customer
rationality, thus hindering sustained customer enrollment to them
of customers with other characteristics (e.g. altruism). In this
paper, we derive appropriate (and personalized) incentives for ADR
contracts, so that non-fully rational customers are compensated
even when information for consumer utilities is not available. In
case such information is hidden, we assume that customers provide
feedback on their satisfaction from direct endowments, albeit
sustaining energy-consumption reduction. Moreover, we consider
the case where customers may strategically lie on their satisfaction
from ADR incentives, so as to self-optimize. We mathematically
model the customer and the utility company’s problems and solve
them algebraically or in a distributed manner. Furthermore, based
on customer feedback on appropriate endowments for different
energy-consumption reductions, we propose an algorithm that can
find the optimal set of satisfied targeted customers, which achieve
the total desired energy-consumption reduction at the minimum
endowment cost. Based on numerical evaluation and simulation
experiments, we showcase the validity of our analytical framework
in realistic scenarios and that, for the case of hidden information,
customer feedback is adequate for calculating incentives that can
lead to successful DR campaigns.

I. INTRODUCTION

Demand Response (DR) programs for curtailing energy con-

sumption in critical times for the operation of the grid are

becoming common. Automated DR (ADR) automates the re-

sponse process of the customer to the DR signals by means of

electric controls installed at the customer premises. An ADR

contract usually predefines a financial reward for the customer

as a compensation for the user utility losses due to her curtailed

energy consumption. ADR rebates are defined mostly statically

and based either on the costs of ADR equipment [1] or the cost

per unit of energy at peak times.

However, this contractual form of financial endowment should

not be based solely on the market value of the conserved energy

for two reasons. First, the utility loss for the customer in the

time periods that energy consumption is curtailed may not be

linked to the market value of that energy, but may include

other aspects, such as actual needs, sensitivity to personal-

comfort loss, etc. In such a case, the endowment may fall short

as means for customer engagement into the ADR program.

Second, ADR programs currently do not take into account

the customer satisfaction from the provided endowment for

an energy-consumption reduction. As a result, an unsatisfied

customer may not renew her ADR contract after it expires.

In [2], we first considered the problem of calculating uniform

satisfactory ADR incentives for uniform load curtailment based

on explicit, yet anonymous, customer feedback, in the cases of

full and hidden information on user utility functions.

In this paper1, we focus on hidden information on user utility

functions and investigate personalized ADR incentives that can

ensure wide customer acceptance, for uniform and non-uniform

energy-consumption reductions by customers. We build upon the

model of [2] and consider that customers are not solely driven

by financial motives, but also by a number of behavioral factors,

such as altruism. Altruistic values in energy can complement or

even dominate the narrow self-interest presumed by a standard

rational choice theory of decision making [3], yet they can be

measured in monetary terms [4]. We identify two optimization

problems for the DR designer, in order to achieve a desired

load curtailment: (i) find minimum ADR incentives that satisfy

a lower bound on the percentage of customers, and (ii) maximize

customer satisfaction ratio within an upper bound on the budget

for endowments. We analytically derive that hidden information

on partially-known user utilities can be approximated based

on customer feedback on the acceptance of ADR incentives.

We also introduce two variants of a feedback-based distributed

iterative algorithm for solving the aforementioned optimization

problems of the DR designer. We separately address the cases

of observable (i.e., signed) and unobservable (i.e., anonymous)

individual feedback. We also consider strategically-lying cus-

tomers on their satisfaction feedback and their impact to the

convergence of the distributed algorithm when a proposed miti-
gation policy against lying is employed by the utility company.

Furthermore, based on customer feedback, we deduce satisfac-

tory endowments for different energy-consumption reductions

sustained by different customers and propose an algorithm for

optimal customer selection, i.e., targeting. This algorithm can

find the optimal set of customers and their respective energy-

consumption reductions that achieve a total energy-consumption

reduction at the minimum total endowment cost, while keeping

targeted users satisfied. Based on numerical evaluation and sim-

ulation experiments, we show that hidden information on user

utility, although costly, can be overcome by means of customer

feedback at a low endowment cost. Finally, we demonstrate that

optimal customer targeting based on individual feedback on

customer satisfaction can further reduce the total endowment
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cost for keeping customers satisfied, even in the presence of

strategic liars. To the best of our knowledge, our work is the

first one that aims to tackle uncertainty in acceptance of ADR

contracts based on customer feedback.

The remainder of this paper is organized as follows: In

Section II, we overview our context and system model. In

Section III, we overview the two aforementioned DR designer’s

optimization problems in the cases of full and hidden infor-

mation on user utility functions. In Section IV, we discuss the

problem of strategic lying and propose a mitigation policy for

the DR designer. In Section V, we present our algorithm for

finding the optimal set of targeted customers based on individual

feedback. In Section VI, we perform numerical evaluation and

simulation experiments with our proposed solutions. In Section

VII, we review the related work, and finally, in Section VIII,

we conclude our paper and indicate some future work.

II. SYSTEM MODEL

We consider a district of residential buildings served by a

utility company. (Alternatively, we could consider additional

contexts, such as the residents of a social-housing establish-

ment.) The utility company offers ADR contracts to the residents

of the district (or of the social housing establishment). DenoteN
the set of residential houses that enroll into the ADR programs.

According to the ADR contract, the utility company curtails

the total energy consumption of the house of a customer in

peak periods by a desired level. A customer i enjoys net benefit

Ui (i.e., user satisfaction minus energy cost) from consuming

baseline energy q0i and an energy-consumption reduction ΔQi in

specific time periods according to an ADR contract results to a

net-benefit loss ΔUi = −ηiUi. In return, the customer i receives

an endowment bi by the utility company. Throughout the paper,

whenever the endowment is the same for all customers, it is

denoted as b, otherwise as bi.
Moreover, we consider that the user utility function of

the consumer does not solely depend on her total energy

consumption, but additionally on other socio-demographic or

psychological factors [5], such as social norms, altruism, needs,

habits, etc. In general, the utility function of customer i depends

on her net benefit Ui from energy consumption q0i and the net

benefit of of all N customers except for customer i from their

own energy consumption U−i, i.e.,

ui = g(Ui, U−i) , (1)

where g(·) is an arbitrary function.

Overall, in general, the user utility difference for customer i
due to the ADR contract is given by:

Δui = ĝ(ΔUi,ΔU−i) + bi , (2)

where ĝ(·) is a function of net-benefit loss that depends on g(·).
For instance, we consider the utility model of [2] that incor-

porates altruism. According to [2], an individual’s overall utility

function is given by a convex combination of her own monetary

payoff and of the sum of the payoffs of others. In the same spirit,

our user utility model that incorporates altruism is given by:

ui = (1− γi)Ui + γiU−i , (3)

where γi ∈ [0, 1] is the degree of altruism of customer i
and U−i is the mean net benefit from consuming energy for

all N customers except for i. Note that a customer i with

γi = 0 is considered fully selfish, while with γi = 1 is

considered completely “disinterested” in her own net benefit

from consuming energy in the sense that she cares only for the

net benefits of others from energy consumption. Henceforth, for

easiness in the calculations and without loss of generality, we

assume the net benefit Ui of customer i from her baseline energy

consumption to be normalized by the maximum net benefit Û
from consuming energy of all customers, i.e., Ui ∈ [0, 1]. Then,

the endowment bi for customer i is also normalized by the

maximum utility of all customers, e.g., bi = 0.3 means that

the endowment for customer i equals the 30% of the maximum

utility value.

Then, the user utility difference for customer i due to the

ADR contract is given by:

Δui = −(1− γi)ηiUi + γiΔU−i + bi , (4)

We define that when the endowment covers the loss of a

customer, i.e., Δui ≥ 0, then the customer is considered to be

satisfied by the ADR contract; otherwise, i.e., Δui < 0, the

customer is unsatisfied.

III. THE PROBLEM

The DR designer needs to construct ADR contracts appro-

priately, so that customers to (a) enroll in them in the first

place, (b) extend/renew their ADR contracts. The former can

be achieved if the reduction in the customer benefit due to the

lower energy consumption, as specified in the ADR contract, is

expected by the customer to be compensated for by the associ-

ated endowment. The latter necessitates that the materialization
of the ADR contract is indeed satisfactory for the customer.

Obviously, an indefinitely high endowment would achieve both

aforementioned goals, but that would be prohibitively costly.

There is a trade-off among the value loss for the customer due

to the energy-consumption reduction as defined in her contract,

the associated endowment to the customer and the customer

satisfaction by the ADR contract. Within this trade-off, the

objective of the DR designer can be one of the following:

(I) Maximize customer satisfaction α for a specific net-

benefit reduction ηi for each customer i due to lower

energy consumption within a budget limit B for endow-

ments.

(II) Minimize total endowment cost for a lower-bound η in

the net-benefit loss due to energy-consumption reduction

of each customer and a lower-bound α in customer

satisfaction.

In case of full-information on user utilities, since the customer

satisfaction ratio α is monotonic in the uniform endowment b,
problem (I) can be solved by sorting all consumers with respect

to Δui of each customer i after using maximum endowment

b = B/N and count how many of them are positive. Also,

problem (II) can be solved by sorting all consumers with respect

to Δu in a descending order for b=0 and then solve the equation

Δuk = 0 to find b, with k = �α · N�. This is the value of b
that makes α% customers having Δu ≥ 0.



If personalized incentive bi per customer i is employed, then

problem (I) is again solved as described above, while problem

(II) is solved as follows: For each customer i, calculate the

personalized incentive that renders Δui = 0. Sort the list of cus-

tomers based on their personalized incentive in ascending order.

The minimum total incentive required for satisfying α · 100%

customers is given by summing the top-(αN) personalized

incentives.

A. Anonymous Feedback

Assume now that user utility functions are private, thus

ΔUi,Δui are private and known only to customer i. Each

customer i honestly provides binary feedback on her respective

satisfaction Δui. Customer feedback may be provided on an

anonymized manner (e.g., through a ballot) or it may be

attributed to specific individuals. In this subsection, we consider

anonymized customer feedback, while observable individual

feedback is considered in the next subsection.

Consider a distributed algorithm where, at each round t, the

DR designer sets a bt and each customer i responds to it with

feedback vi,t+1, which collectively result to a mean satisfaction

level αt+1 for the received incentives at the next round. The

feedback vi,t+1 of customer i at round t + 1 is determined by

the sign of:

Δui,t+1 = ĝ(ΔUi,
∼

ΔU−i,t) + bt , (5)

where
∼

ΔU−i,t is an estimate by customer i on the net benefit

losses of other customers at round t. We show how such an

estimate can be calculated later in this subsection.

For solving problem (I), the DR designer needs to update bt at

each round t, so as to maximize customer satisfaction within in

the feasible set of direct incentives, i.e. bt ≤ B, ∀t. Employing

gradient ascent, the DR designer selects bt+1 for the round t+1
as follows:

bt+1 =

{
max{bt +Δα · κ, 0} , when Δα �= 0

bt + κ, when Δα = 0
(6)

where Δα = αt+1 − αt and 0 < κ << 1 the step size of the

gradient ascent algorithm.

If Δα/αt < Δb/bt or bt ≥ B, then stop iterations. In plain

words, if the increase rate of b is greater than the increase rate

of α or if we exceeded the available endowment budget B, then

we stop iterations.

For solving problem (II), the DR designer again employs

the aforementioned gradient ascent algorithm, but the stopping

criterion is αt ≥ α.

We now show how
∼

ΔU−i,t at round t can be estimated

by customer i for a specific instance of user utility functions.

Assume the user utility model in (3) and Δui defined by (4).

Also, assume that Ui and γi are private information known only

to customer i; hence, Δui is private. Then, the feedback vi,t+1

of customer i at round t + 1 is determined by the sign of the

following:

Δui,t+1 = −(1− γi)ηiUi + γiΔU−i,t + bt (7)

We need to calculate ΔU−i,t at round t. Note that there holds

−1 ≤ −Ui ≤ 0 . (8)

Since ηi ∈ [0, 1], it follows that

−ηi ≤ ΔUi ≤ 0 , (9)

−ηmax ≤ ΔU ≤ 0 , (10)

where ηmax ∈ [0, 1] is the maximum fraction of resulting net

benefit loss for customers from energy-consumption reduction.

Therefore and since γi ∈ [0, 1], it is true that

bt − ηmax ≤ Δui,t+1 ≤ bt , ∀i ∈ N . (11)

Recall that

ΔU−i = −
∑N

j=1

j �=i
ηjUj

N
. (12)

Adding down (7) for all customers and dividing by N and taking

that ΔU−i ≈ ΔU for large N , we have that

Δut+1 = −
∑N

i=1 (1− γi)ηiUi

N
+ γ̄ΔU t + bt . (13)

We can assume the following approximation∑N
i=1 (1− γi)ηiUi

N
≈ (1− γ̄)ΔU , (14)

which, when γi values for each customer i are close to each

other, is a rather accurate. Based on this approximation, equation

(13) becomes

Δut+1 = ΔU t + bt . (15)

Also, according to the user feedback at each round t, the mean

satisfaction at+1 of the customers can be calculated. Recall that

according to (11), Δui,t+1,Δut+1 ∈ [bt − ηmax, bt]. Since by

definition at+1 ∈ [0, 1], it follows that ηmax(at+1 − 1) + bt ∈
[bt−ηmax, bt] as well, i.e., Δut+1 and ηmax(at+1−1)+bt have

the same codomains (i.e., sets of outputs). Moreover, observe

that

ηmax(at+1−1)+bt = ηmax

(∑
i∈N 1(Δui,t+1 ≥ 0)

N
− 1

)
+bt,

where 1(·) is the indicator function that equals 1 when its

argument is true and 0 otherwise. Therefore, ηmax(at+1−1)+bt
and Δut+1 increase or decrease in the same way according to

the values Δui,t+1 of each customer i. To this end, it can be

taken as approximation that:

Δut+1 = ηmax(at+1 − 1) + bt (16)

Employing (16) in (15), we derive that

ΔU t ≈ ηmax(at+1 − 1) . (17)

Then, employing (17) in (7), we have that for each customer

i at round t+ 1 the following is true:

Δui,t+1 = −(1− γi)ηiUi + γiηmax(at − 1) + bt (18)

Customer i provides her satisfaction feedback at round t+ 1
according to the sign of (18). Note that ηmax can be guessed

by the DR designer based on the desired energy-consumption

reduction and the consumption baselines of customers, through

which shiftable and non-shiftable loads can be estimated. Even

if ηmax cannot be estimated, it can be set equal to 1 for a more

loose, yet adequate, approximation of ΔU t, as shown in [2].



B. Named Feedback

If the origin of individual votes can be observed (i.e., if

feedback is signed), then b can be decided on a personalized

basis. This situation can arise in various realistic cases of

feedback provision, e.g., through a mobile app, through a

web interface with authorized access, etc. In the algorithm of

Subsection III-A, the personalized direct incentive bi could be

selected by the DR designer at round t, so as Δui,t ≈ 0 by

observing when the individual feedback of customer i changes.

Then, bi is kept constant in the subsequent rounds until target

satisfaction is achieved.

IV. STRATEGIC FEEDBACK

So far, we have assumed that the customers report honestly

their satisfaction from the direct incentive that is provided to

them. However, in the aforementioned setting, customers have

indeed incentive to lie; untruthfully reporting to be unsatisfied,

results in higher direct incentive for them. To this end, we

consider the following mitigation policy against strategic liars

in the ADR contract: the DR designer is willing to provide a

direct incentive b to the customers as an endowment for their

net benefit losses due to the lower energy consumption as long

as b does not exceed a budget upper bound B that is unknown

to the customers. If bt becomes infeasible, then the DR designer

provides no direct incentives to customers, while they still

sustain the desired energy-consumption reduction as a penalty.

We assume that the DR provider selects the upper bound on

endowment budget B based on pilot experiments with a trusted

subset of customers or by having an estimation of the maximum

net benefit Û and knowing the forcible energy consumption

decrease. Then, considering again the iterative approach for

finding b, the expected utility difference for customer i can be

calculated by:

Δui,t+1 = −(1− γi)ηiUi + γiΔU−i,t + Pr[bt < B|zi lies]bt ,
(19)

where Pr[bt < B|zi lies] is the probability that bt does not

exceed the budget upper bound B given that the customer i
has already lied zi times. It can be assumed that the probabil-

ity of overshooting the upper endowment bound B increases

exponentially with the number of iterations that the user sends

untruthful feedback. Equation (19) is employed by strategically

lying customers for determining their satisfaction feedback (and

whether to lie about it or not) in the various algorithms run by

the DR designer to find appropriate endowment values.

V. FEEDBACK-BASED CUSTOMER TARGETING

So far, we have assumed that the desired energy-consumption

reduction ΔQ is equally shared by all customers. We now con-

sider customer targeting policies for achieving ΔQ, in which,

different customers undertake different burden for achieving

the energy reduction objective. Recall that the same energy-

consumption reduction results to a different net benefit loss

fraction ηi for each customer i. In general, there is an increasing

function hi(ΔQi) for each customer i that determines the

percentage of net benefit loss for different energy-consumption

reduction values ΔQi incurred by i. In this case, equation (4)

is rewritten as follows:

Δui = −(1− γi)hi(ΔQi)Ui + γiΔU−1 + bi(ΔQi) , (20)

where bi is the endowment that needs to be given to customer i
for being indifferent for the energy-consumption reduction ΔQi.

We now address the problem of finding the specific

energy-consumption reduction that needs to be incurred by

each individual customer, so that the total desired energy-

consumption reduction is achieved at the minimum endow-

ment cost. Assume a discrete set of energy-consumption re-

ductions that may be enforced to different customers H =
{ 1
NΔQ, 2

NΔQ, . . . , θmaxΔQ}, where θmax is the maximum

fraction of energy-consumption reduction to be incurred individ-

ually by a customer. In general, θmax can be personalized per

customer, but we assume it here to be the same for all customers

for the sake of simplicity. Then, in case of full information on

user utility functions, the DR designer can calculate for each

customer i and each different energy-consumption reduction

ΔQj ∈ H the appropriate endowment bi,j , so that Δui = 0. In

case of hidden information on user utilities, yet with observable

individual feedback on user satisfaction by the provided en-

dowment, the DR designer can consecutively enforce different

ΔQj ∈ H to all customers and determine respective bi,j for

each customer i by employing the approach of Subsection

III-B. Strategic feedback, if present, is deterred according to

the approach of Section IV. However, note that, both in the case

of full information and in that of hidden information on user

utilities, this approach entails an approximation on the value of

ΔU−i. Specifically, while each (ΔQj , bi,j) pair for ΔQj ∈ H
and customer i is calculated based on ΔU−i resulting from

applying the consumption reduction ΔQj to all customers, in

fact, ΔU−i should have been the one resulting by targeting only

a specific subset of users, which is unknown. We experimentally

assess the accuracy of this approximation in Subsection VI-B.

Having determined pairs of (ΔQj , bi,j) for each customer

i and different energy reductions j with ΔQj ∈ H, the DR

designer needs to select the targeted users and their respective

energy-consumption reductions, so as to cover energy ΔQ at

the minimum total endowment cost. This problem resembles

bounded Knapsack with item weight ΔQj and item value

bi,j , and it can be solved as follows (see Algorithm 1): Sort

pairs (ΔQj , bi,j), ∀i, j according to their ΔQj/bi,j value in

decreasing order and add them to list L. Start from the top of the

sorted list L and add top item to the bag. When a pair belonging

to customer i is added to the bag, remove from the sorted

list L all other pairs of customer i. Assume current energy-

consumption reduction of the bag is W . Continue adding pairs

to the bag until W + ΔQj ≥ ΔQ for next pair (ΔQj , bk,j)
of customer k. Then, from the remaining pairs in the list L
select the first one (w, v) that gives W + w = ΔQ if exists.

Otherwise, among remaining pairs in L, select the one (w, v)
with the lowest v, while W +w > ΔQ. For J different energy-

consumption reduction steps for each customer and N customers

the complexity of this algorithm is O(NJ log (NJ)) for sorting

the list and O(NJ) for filling the bag, i.e., O(NJ log (NJ))
overall.



Algorithm 1 Feedback-based Customer Targeting

Input: P ← {(ΔQj , bi,j)} ∀i ∈ N ,ΔQj ∈ H
Output: Set S of targeted customers

1: L ← sorted P in descending order based on ΔQj/bi,j ∀i ∈
N ,ΔQj ∈ H

2: W ← 0, vextra ← +∞
3: while L �= ∅ do
4: (wi, vi)← L.pop() � Get first item from list L. It

belongs to customer i.
5: if W + wi > ΔQ then
6: break � Exit the while loop.

7: end if
8: S .add((wi, vi))
9: L.remove(other pairs of customer i)

10: W ←W + wi

11: end while
12: vextra ← +∞
13: p← None
14: for (w, v) ∈ L do
15: if W + w = ΔQ then
16: S .add((w, v))
17: W ←W + w
18: break � Exit the for loop, optimal solution found!

19: else � Find item (w, v) with smallest v in the

remaining items, so that W + w > ΔQ.

20: if W + w > ΔQ ∧ vextra > v then
21: vextra ← v
22: p← (w, v)
23: end if
24: end if
25: end for
26: if W < ΔQ then � If optimal solution not found.

27: S.add(p) � Add last item to S .

28: end if

Theorem 1. When it is possible to fill the bag with exactly ΔQ,
then Algorithm 1 finds an optimal solution.

Proof. Assume that (w1, v1), (w2, v2), . . . , (wK , vK) are the

items selected by Algorithm 1, so that
∑K

k=1 wk = ΔQ with

total endowment cost V =
∑K

k=1 vk. If it was not optimal, then

there would exist a pair (we, ve) that replacing an item m from

1, . . . , k would give V ′ < V . Since after the item replacement

the total energy-consumption reduction should still be ΔQ, it

is derived that wm = we. Then, for V ′ < V , it should be that

ve < vm. However, if this were true, then pair (we, ve) should

have been before (wm, vm) in the sorted list L, which is not true.

Thus, when W = ΔQ, the solution found by the Algorithm 1

is optimal.

Note that Algorithm 1 is more likely to find the optimal so-

lution, the larger the J of discrete steps of energy-consumption

reduction fractions for which customer feedback is collected, the

smaller the ΔQ and/or the larger the number N of customers.
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Fig. 1: (a) The maximum customer satisfaction per customer

budget B/N and (b) the minimum individual endowment that

achieves a desired customer satisfaction.

VI. EVALUATION

We consider a system of N = 1000 customers. The degree

of altruism γi for customer i follows Uniform distribution in

[0, 1], while the fraction ηi of her net benefit loss due to energy-

consumption reduction is assumed to be uniformly distributed

in [0.1, 0.3], unless otherwise specified. The DR designer is

assumed to have guessed semi-correctly ηmax = 0.5. The

satisfaction of customer i for her nominal energy consumption

is assumed to follow Normal distribution with mean 0.8 and

standard deviation 0.1, i.e., Ui ∼ N(0.8, 0.1).

A. Uniform Load Reduction

We assume that the DR designer does not know the user

utility functions of customers and that customers provide feed-

back on their satisfaction for the endowment provided to each

of them in an iterative manner according to (6) with κ=0.1.

Solving problem (I) for the cases of full and hidden information,

the maximum achievable customer satisfaction within a certain

budget B is depicted in Fig. 1a. Also, solving problem (II) for

the cases of full and hidden information, the minimum cus-

tomer endowment that achieves a specific minimum customer

satisfaction is depicted in Fig. 1b. As it can be seen from Fig. 1a

and Fig. 1b, hidden information creates an extra incentive cost,

yet, very low, thanks to our feedback-based approximation and

distributed algorithm. Our distributed algorithm converges very

fast, requiring only 5 and 6 iterations for these instances of

problems (I) and (II) respectively.

Next, we consider observable individual (i.e., named) feed-

back and solve problems (I) and (II), as described in Section III

for the full and hidden info cases. As depicted in Fig. 2, tailored

individual endowment bi for keeping each customer i that has

sustained an energy-consumption reduction satisfied are more

economic for the utility company, as compared to a uniform

endowment b for all customers, for both optimization problems.

We now assume that a fraction of the customers strategically

lie on their reported feedback. We assume that Pr[bt < b̂|zi lies]
is modeled by an exponential distribution with λ = 1, the

random variable of which is the number of times that the

customer is lying. A strategic liar does so opportunistically: if

lying at an iteration reduces her user utility difference at the

next iteration, she stops lying from then on. We present results

from the solution to problem (II) for different fractions of liars

{20%, 50%} in Fig. 3. Observe therein that, the presence of

liars increases the amount of incentives to be paid for the same
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Fig. 2: Observable individual feedback: (a) The maximum cus-

tomer satisfaction with respect to the total incentive budget

and (b) the minimum total endowments that achieve a desired

customer satisfaction.
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Fig. 3: Strategic feedback: minimum endowment per targeted

customer satisfaction in presence of (a) 20% and (b) 50% liars.

targeted customer satisfaction when the feedback is anonymous.

However, for named feedback, strategically lying does not pay

off for liars: In fact, since targeted customer satisfaction can be

achieved mostly by satisfied honest customers (especially true

when targeted satisfaction ratio is smaller than the fraction of

liars) and since incentives are given to satisfied customers only,

the total minimum amount of endowments is smaller.

B. Customer Targeting

In this subsection, we deal with customer targeting for

achieving a desired total energy-consumption reduction. We

assume that the net benefit loss of customer i for a spe-

cific individual energy-consumption reduction ΔQi is given by

hi(ΔQi) = ΔQ1+ni
i , with ni ∼ U(0.1, 0.3) expressing the

sensitivity of customer i to energy-consumption reduction. We

setH = {0.05ΔQ, 0.1ΔQ, 0.15ΔQ, 0.2ΔQ, 0.25ΔQ, 0.3ΔQ}
to be the set of different individual energy-consumption reduc-

tions considered. For simplicity, we set the nominal energy-

consumption reduction of each customer equal to 1. We consider

both full and hidden information on user utility functions with

anonymous or named individual feedback and find (ΔQj , bi,j)
pairs for each customer i and ΔQj ∈ H according to the

approach of Section V. We also consider the presence of 30%

strategic liars for either anonymous or named user feedback.

Employing Algorithm 1, we find the set of targeted users and

the energy-consumption reduction that should be applied to

each user at this set, in order to achieve different total energy-

consumption reductions at the minimum total endowment cost

for all the cases considered. As shown in Fig. 4a, targeting

results in lower total endowment cost for achieving a spe-

cific total energy-consumption reduction, as compared to those
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Fig. 4: (a) Total incentives for keeping customers satisfied

for different energy-consumption reductions, either sharing the

reduction among all customers for anonymous feedback and

named feedback, or allotting the reduction specific customers

by means of targeting. (b) The number of satisfied targeted

customers for different total energy-consumption reductions.

found by applying the same individual energy-consumption

reduction to all users, even when full information on user

utility functions is not available and individual feedback is

observable or not. However, as expected, the benefit obtained

by targeting decreases as the aimed total energy-consumption

reduction increases (and so do the set of targeted users and their

respective individual consumption reductions). Also, observe in

Fig. 4a that, hidden information on user utility functions indeed

increases total endowment cost, while strategic feedback (either

anonymous or named) creates an additional cost burden for the

DR designer, yet a very limited one for low desired energy

reductions.

Since the calculation of the respective necessary individual

endowments for keeping targeted customer i satisfied for differ-

ent individual consumption reductions entails an approximation

on the value of ΔU−i, as explained in Section V, one may

think that targeted users may not be satisfied with the provided

endowments after all. We experimentally study this case as fol-

lows: We employ equation (18) without t indices and calculate

the resulting satisfaction of the targeted users by the provided

endowment. In equation (18), we initially consider the fraction

α of customers that are satisfied to be equal to the fraction of

customers that are not targeted. We then repetitively adjust α
to include the number of targeted customers that are satisfied

by their provided endowments and re-employ (18) to find the

number of satisfied targeted customers, until the number of

satisfied targeted customers remains unchanged, in a fixed-point
manner. As depicted in Fig. 4b, all targeted users are satisfied

by their provided endowments for all different desired total

energy-consumption reductions considered both for honest and

for anonymous strategic feedback. However, for named strategic

feedback, a small fraction of targeted customers may remain

unsatisfied. Thus, in presence of strategic liars, anonymous

feedback is preferable for targeting purposes.Fig. 4b depicts the

number of (satisfied) targeted users for achieving the different

total energy-consumption reductions considered.

VII. RELATED WORK

There exists an extensive literature in incentive-based DR

and DLC programs [6], [7] that perform social welfare maxi-



mization, while minimizing electricity generation/supply. Below,

we briefly discuss certain articles that are more closely related

to our work. In [8], the problem of optimal incentive design

for voluntary participation of electricity customers in a Direct

Load Scheduling (DLS) program is studied. The incentives are

posted by an aggregator in dynamically updated and publicly

available tables for all users, which would then respond by

deciding whether they want to participate or not, and how

much laxity they wish to offer to the aggregator for scheduling

their appliances. In the same direction, in [9], they study the

design of an optimal contract between a DR aggregator (DRA)

and a user for incentive-based demand response. They aim to

maximize the utility of the DRA by incentivizing users both to

exert maximal effort in reducing the load and to avoid falsifying

their consumption baseline by compensating users in proportion

to their reported energy-consumption reduction. In [10], the

utility company proposes dynamic contracts to the users for

load curtailment. The utility company employs a double-edged

incentive, i.e., provide reward to the users that curtail their load

and issue a fine to those that do not, in order to select the

optimal set of targeted users and the curtailment amounts of

their loads. Also, different incentives and targeting policies are

proposed in [11]. They focus on ADR programs and propose

an approach to determine the value of incentives to be offered

to a user based on the individual assessment of her net benefit

loss by energy-consumption reduction. In [11], they propose

a targeting algorithm to select the optimal set of users to be

targeted for DR and two accompanying policies that restrict (in

different ways) the user discomfort caused. However, in [11],

neither hidden information on user utility functions nor feedback

on customer satisfaction by ADR incentives are considered. In

[12], they aim to design an optimum scheme for achieving the

maximum benefit out of a DR program and not only reduce costs

and improve reliability, but also increase customer acceptance

of the DR program by limiting price volatility. We also aim at

increasing customer acceptance of ADR contracts, yet, based

on customer feedback, as opposed to [12].

Non-monetary incentives can be strong motivators in some

contexts and may be less expensive than monetary ones that

would be required to generate a similar degree of behavioral

change, as dictated by behavioral economics [13]. Towards

social pressure, understanding the impact of altruism is an im-

portant topic in many research areas beyond computer science,

such as economics, psychology and biology. The experiments

designed by Leider et al. [14] show that directed altruism

strongly impacts people’s behavior in an allocation game, where

players are allocated some total quantity. The effect of directed

altruism is explored in Incentive Networks [15]. Participants in

[15] are asked to make a contribution towards a global task and

receive some sort of reward for it. The contribution of each

person in [15] is a function of her expected reward and the

expected rewards of others related to her.

To sum up, there exists no prior approach on the design

of appropriate incentive-based ADR contracts that take into

account behavioral characteristics of users and their explicit

feedback on contract acceptance, as opposed to our work.

VIII. CONCLUSION

In this paper, we studied the calculation of ADR endowments

for customers that sustain energy-consumption reduction based

on anonymous and named feedback on customer satisfaction,

which may be strategic or not, and proposed respective algo-

rithms for the different cases. We also introduced an algorithm

for selecting the optimal set of customers to sustain specific

individual energy-consumption reductions, while being provided

with satisfactory ADR incentives based on customer feedback,

so as to achieve an overall objective on energy-load curtailment.

This algorithm works for both known and hidden user utility

functions. Our evaluation has shown the effectiveness of our

various algorithms for the calculation of appropriate ADR

incentives, in the cases of either full or hidden information on

user utility functions, even in the presence of high fractions

of strategic liars among customers. Also, we found that cus-

tomer targeting is preferable for low (<20%) desired energy

consumption reductions, even for hidden information on user

utility functions and even in the presence of 30% strategic liars.

Overall, we have explained and showcased how satisfactory

endowments (individual or not) for uniform or personalized load

curtailment can be accurately calculated by the utility company

based on customer feedback. Our formulation and approach are

generic-enough to consider different user utility functions; yet,

the consideration of different behavioral factors [5] is left for

future work.

REFERENCES

[1] C. Riker, K. Wang, and F. Yoo, “Energy Efficiency and Automated
Demand Response Program Integration: Time for a Paradigm Shift,” in
ACEEE Summer Study on Energy Efficiency in Buildings, 2016.

[2] T. G. Papaioannou, G. D. Stamoulis, and M. Minou, “Adequate feedback-
based customer incentives in automated demand response,” in ACM e-
Energy, June 2018.

[3] T. Dietz, “Altruism, self-interest, and energy consumption,” Proc. of the
National Academy of Sciences, vol. 112, no. 6, pp. 1654–1655, 2015.

[4] B. M. Hannon, “Energy, growth, and altruism,” Technological Forecasting
and Social Change, vol. 20, no. 3, pp. 173–197, 1981.

[5] E. Frederiks, K. Stenner, and E. Hobman, “The Socio-Demographic and
Psychological Predictors of Residential Energy Consumption: A Compre-
hensive Review,” Energies, vol. 8, no. 1, pp. 573–609, 2015.

[6] F. A. Qureshi, T. T. Gorecki, and C. N. Jones, “Model predictive control
for market-based demand response participation,” in IFAC Proceedings
Volumes, vol. 19, 2014, pp. 11 153–11 158.

[7] P. Samadi, A.-H. Mohsenian-Rad, R. Schober, V. W. S. Wong, and
J. Jatskevich, “Optimal Real-Time Pricing Algorithm Based on Utility
Maximization for Smart Grid,” in IEEE SmartGridComm, 2010.

[8] M. Alizadeh, Y. Xiao, A. Scaglione, and M. Van Der Schaar, “Incentive
design for Direct Load Control programs,” in Allerton ’13, 2013.

[9] D. G. Dobakhshari and V. Gupta, “Optimal contract design for incentive-
based demand response,” in American Control Conference, 2016.

[10] A. Anastopoulou, I. Koutsopoulos, and G. D. Stamoulis, “Optimal target-
ing and contract offering for load curtailment in nega-watt markets,” IEEE
TCNS, vol. 4, no. 4, pp. 805–815, 2017.

[11] M. Minou, G. D. Stamoulis, G. Thanos, and V. Chandan, “Incentives
and targeting policies for automated demand response contracts,” in IEEE
SmartGridComm, 2015.

[12] A. Asadinejad and K. Tomsovic, “Optimal use of incentive and price
based demand response to reduce costs and price volatility,” Electric Power
Systems Research, vol. 144, pp. 215–223, 2017.

[13] D. Kahneman, “Maps of bounded rationality: Psychology for behavioral
economics,” American Economic Review, vol. 93, no. 5, pp. 1449–1475,
2003.
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