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Abstract

With the increasing cost of elec. “icity, Cloud providers consider energy con-
sumption as one of the major cosy factors to be maintained within their
infrastructure. Conseque .uiy, various proactive and reactive management
mechanisms are used to icientl - manage the cloud resources and reduce the
energy consumption a'.d co.’ "hese mechanisms support energy-awareness
at the level of Physi al "iachines (PM) as well as Virtual Machines (VM)
to make corrective ac.’.onc. This paper introduces a novel Cloud system
architecture that racilitates an energy aware and efficient cloud operation
methodology ar i pre ~uts a cost prediction framework to estimate the to-
tal cost of VM . | ased on their resource usage and power consumption. The
evaluation or a (' oud testbed show that the proposed energy-aware cost pre-
diction framewo. " is capable of predicting the workload, power consumption
and estin atip | total cost of the VMs with good prediction accuracy for vari-
ous Clouu 7 plic .tion workload patterns. Furthermore, a set of energy-based
pricin’, scheme. are defined, intending to provide the necessary incentives to
creat : an en rgy-efficient and economically sustainable ecosystem. Further
evalua. ~n »_sults show that the adoption of energy-based pricing by cloud
2 1d apy lication providers creates additional economic value to both under
¢ 'fferent market conditions.
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1. Introduction

The emergence of cloud computing as an inforw ation .echnology (IT)
service has seen the provision of computing por ¢1 and storage away from
companies and organisations. Cloud remote dat. cr itre:, managed by cloud
providers, handle the services required by cu *ome»s ncluding Small and
Medium Enterprises (SMEs) in a centralised and controlled environment
rather a local I'T system. These providers 1. ke us . of virtualisation in the
management of information and communice on vechnology (ICT) resources,
which provides a simplified server admii~*=~**~ improved resource utilisa-
tion, and reduced IT costs.

However, with the wide adoptior " “'lana Computing, energy consump-
tion has become one of the main issu ¢ for Cloud providers to address. A
Cloud infrastructure along with it. . ~oli1. ~ resources consume a large amount
of energy to operate, which may cav e c.ological and economic issues. From
the economical perspective, C ~ua [ oviders consider energy consumption
as one of the key cost factors witn - substantial impact on the operational
cost of the Cloud infrastrr-* -ve [1]. Therefore, various energy efficient tech-
niques have been introdr ced to elp Cloud providers reduce the energy cost
of their infrastructure, whi."> car then lead to reducing the cost of operational
expenditure (OPEX) and having less negative impact on the environment.
Cost mechanisms of..»e. by Cloud providers have become sophisticated, as
customers are che ged pe. .nonth, hour or minute for the services they use.
Nevertheless, th’ re . -2 still limited as customers are charged based on a pre-
defined tariff f~~ the resources usage which include CPU, memory, storage
and network. T'hi pre-defined tariff does not consider the variable cost of en-
ergy [2]. Consc 1ently, modelling a new cost mechanism for services offered
that can "e aljusted to the actual energy costs has become an interesting
research ~o’..

Th~ *npac’ f energy consumption is not only dependent on the efficiency
of th: physic 'l resources, but also on the strategies deployed to manage these
resow, *es as well as the efficient design of the applications running on these
resources |3]. Different methods have been used to efficiently manage cloud
1source: , all of which can be based on certain thresholds, called reactive, or
ba. >~ prediction, called proactive [4]. For example, once an 80% CPU util-
we o threshold is exceeded, a corrective action takes place such as adding




more resources to avoid service performance degradation Prec icu. e methods
have the advantage of taking corrective actions at an eari, tage to prevent
Service Level Agreement (SLA) violation and maints.n the expected service
performance. To efficiently design cloud applications applic: tions’ designers
and developers should be provided with energy-a»=re .~ cost information
for supporting the task of optimising energy ef icier .y resulting from run-
ning services in cloud environments. As discussew .n [5! having appropriate
tools for energy monitoring is essential to suppor. ~mergy-awareness and con-
tributes to energy optimisation in all layers ~f the C))ud stack. Furthermore,
estimating the total cost of cloud services ~an ..~ make effective strategies
and energy efficient resource allocation metu. 1s [5]. Thus, managing the
Cloud paradigm in all different levels a. * reducing the energy consumption
has received a lot of attention in the literat. e as it can result in reduction
of OPEX costs for the Cloud provide s.

Another important aspect is t ~ cons. ler novel pricing schemes, intending
to provide the necessary incentives ‘o . “eate an energy-efficient and econom-
ically sustainable ecosystem. ™+icing in cloud computing has been studied
extensively in the past and mos' approaches consist of a combination of
a fixed or variable price per VM instance and an additional usage charge
based on the actual use st co. nuting resources, such as CPU cycles, net-
work bandwidth, memo. - and s jorage. Some cloud providers employ even
simpler pricing schem s, sucn .3 monthly or yearly subscriptions. However,
none of the aforeme itio.ed - chemes provide incentives for efficient energy
consumption. One canc 1at @ solution could be the adoption of energy-aware
pricing by the clr . 7 service providers for achieving a more efficient resource
usage.

Additiona’.y, o evaluate the effect of pricing, one needs to consider the
actions take.. by all the economic agents involved. For example, a price in-
crease by 7 a Intre *ructure as a Service (IaaS) provider does not necessarily
lead to 7a ircreae in its profits, as the demand of applications for VMs
might drop ons derably. For this reason, a microeconomic model is consid-
ered, vhich ‘ncorporates the actions of laaS as well as Platform as a Service
(Paa. ) provi: ers, applications and their users. Since an action of any of these
agemts oo oers a chain of subsequent responses by the others, determining
t 1e equ.’ibrium of such interactions is an interesting problem.

The - .im of this research is to enable energy-awareness of resource usage at
virtual level in cloud computing environments, which contributes to overcome
tF 2 cnallenge of identifying energy usage for the VMs. Also, this research




aims to predict the workload, energy consumption and esti aav. total cost
of the VMs based on specific cloud workload patterns. Che outcome of
this research can be used to help make efficient de_isions supported with
energy-awareness and cost estimation. This paper’s main ¢ ntributions are
summarised as follows:

e a Cloud system architecture that includes * req ired components to
support energy-awareness and total cos. ~stii._.don of Cloud infras-
tructure services;

e an energy-aware model that fairly a. ~ibuies the energy consumption
to heterogeneous and homogeneons VMe  Clouds;

e an energy-aware framework for predic.’ng the usage and cost of het-
erogeneous and homogeneous "Ms by considering their resource and
power consumption;

e an adoption analysis of the prcmosed energy-based pricing schemes by
cloud and application pro “qers.

This paper is organiser =s follows: Section 2 introduces the proposed
cloud system architecturc. Th. energy-aware VM model and the energy-
aware cost prediction fra.. ~wor'. are presented in Sections 3 and 4, respec-
tively. In Section 5, a set of mnovative energy-based pricing schemes are
proposed. Section 6 ~re ents the experimental set up and design. Section 7
includes the evalv .tion “ “ne proposed cost estimation framework, as well
as the economic n., ications of energy-aware pricing under different market
conditions. Section 8 discusses the related work, and Section 9 concludes this
research and isc sses future steps.

2. Syste a Archicecture

In this . ~tic a, an architecture that supports energy-awareness in differ-
ent le sels of the Cloud stack while at the same time aware of the impact on
other quality characteristics of the overall cloud system such as performance
an” cos. © proposed. Figures 1-3 provide an overview of the proposed ar-
Ciitectu = [6]. The high-level interactions of all components are separated
1. *o thre 2 distinct layers whose interaction supports the standard Cloud ser-
vice model: construct, deploy and operate/re-configure. Next, details on the
ir .eractions of the architectural components are discussed.
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2.1. Layer 1 - SaaS

In the SaaS layer a set of compounents interact to facilitate the modelling,
design and construction o” a C"~ud application. The components aid in eval-
uating energy consump’ on of a Cloud application during its construction.
A number of plug-ins are . ~v ded for a frontend Integrated Development
Environment (IDE) s a .neans for developers to interact with components
within this layer. A nu - oer Jf packaging components are also made available
to enable provide: agnostic deployment of the constructed cloud application,
while also main?ainii, energy awareness.

The IDE is ...*ended to be the main entry point to the infrastructure for
service desig ers and developers. The idea is that the IDE integrates the
graphical jaterices to the different tools available in the SaaS layer, thus
offering ¢ un’ied and integrated view to users. The Programming Model
Plug-in (1 * plu -in) provides a graphical interface to use the Programming
Mode' wud sup, orting tools to enable the development, analysis and profiling
of an applica ‘on in order to improve energy efficiency. On the other hand, the
Progra. ~mi~ g Model provides the service developers with a way to implement
¢ rvices ~omposed of source code, legacy applications executions and external
\ 7eb serv ices [7]. Although these complex services are written in a sequential
fasu.... without APIs, the applications are instrumented so they call the
Frog.amming Model Runtime to be executed in parallel.




The Requirement and Design Modelling Plugins are *iitie 1y . sed during
the system testing phase of a SaaS application. In cases . iterative or in-
cremental development, this means that these SaaS viodelling tools can be
used at the end of each iteration whose results prov des an >xecutable part
of the SaaS application.

The Ezxperiment Manager (EM Plug-in) is use { pri .« o a SaaS application
deployment. It assumes that a current SaaS app...atior version has an exe-
cutable version on which integration and system . <ts can be performed. The
DEM helps a SaaS development team in ¢ operatic n with a SaaS provider
to determine what deployment configural’on o "~ .aatives of their SaaS ap-
plication is likely to provide the most effecti. ness business operation. In
particular, the DEM will assist in man. ng experiments where application
representative workloads are exercised on di. rent deployment configuration
alternatives of a SaaS application ve sio. vu obtain measurements on cost,
energy behaviour and time perfor mance behaviour of each workload.

The Code Optimizer plays an >sscmtial role in the reduction of energy
consumed by an application. "< is . chieved through the adaptation of the
software development process anu W providing SaaS software developers the
ability to directly understand the energy foot print of the code they write.

Other components in nis L. er include 1) the Application Packager com-
ponent is in charge of . ~kagin ; applications. This component takes into
account input from tFe Requ. :ments and Design Modelling Plug-in in the
Open Virtualisation dorriat “OVF) to package the software with the differ-
ent requirements. "¢ aw.  gf aerates a Service Manifest to submit to the VM
Image Construct .- 2) the VM Image Constructor (VMIC) uses the appli-
cation packages and ti. service manifest or application descriptor to create
VM images that an be deployed in the PaaS layer, and 3) the Application
Uploader int.~ac’ s with the PaaS Application Manager to register the final
VMs readr for ae, loyment.

2.2. Layer © - PuaS

T'.e PaaS layer provides middleware functionality for a Cloud application
and 1 cilitate 5 the deployment and operation of the application as a whole.
Coempouw. s within this layer are responsible for selecting the most energy
¢ pprop1_te provider for a given set of energy requirements and tailoring the
a, nlicat’on to the selected providers hardware environment. The Application
Manager (AM) component manages the user applications that are described
as virtual appliances, formed by a set of VMs that are interconnected between
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Figure 2: PaaS Architecture Application Deployment.

them. The Energy Modeller ai -~ to o ther and manage energy related infor-
mation throughout the whole Clo. 1 Service lifecycle and Cloud layers: from
requirement level Key Performance Indicators (KPIs) to programming model
annotations down to Pa# 5 ana laaS level measurements made through the
monitoring agents prese.." at th: se levels. The energy modeller provides an
interface to estimate t'ie enery  cost of PaaS KPIs, and the provided estima-
tions assist in the se ectimn o” the appropriate laaS provider for running the
application. Morer ver, . » ovides aggregated measurements of energy con-
sumption (Wh) 7..7 average instant power (W) per each application and its
events as required by ¢.her components such as the Pricing Modeller, which
needs to know che current energy consumption to get billing information, but
also forecast “he price change of an application deployment/re-deployment.
It also prr vides « ~ergy-aware cost estimation related to the operation of
applicati .ns - n tcp of VMs on a specific IaaS provider. The role of the Vir-
tual Machu.~ Cntextualizer (VMC) is to embed software dependencies of
a serv (ce into a VM image and configure these dependencies at runtime via
an in rastruc ,ure agnostic contextualization mechanism. Additionally, the
VM en ' “es the use of energy probes for the gathering of VM level energy
1 erforni. nce metrics. Application level monitoring is also accommodated for
h.ve, in «ddition to support for Service Level Agreement (SLA) negotiation.
The self-Adaptation manager (PaaS SAM) is the principle component in this




layer for deciding on the adaptation required to mainta’a ST As. Its overall
aim is to manage the trade-offs between energy, performanc and cost during
adaptation at runtime. The PaaS SAM is notified of .ne ne=d o perform an
adaptation by the SLA manager.
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w oy ||t E
N Generator
Scheduler || Modeller Manager v C— E
SO .
Framework
< ]

nepH

e MUS
Monitoring Hypervisor (KVM)
Infrastructure N |

Monitoring Analytics

“ HFO0O0H

Figure 3: IaaS Architecture - Apphcation Operation and Re-Configuration.

2.8. Layer 3 - laaS

In the IaaS layer ’ ne 7 dmission, allocation and management of virtual re-
source are performed " -ous a the orchestration of a number of components.
Energy consumpt m is mouitored, estimated and optimised using translated
PaaS level metrics. 1 "ese metrics are gathered via a monitoring infrastruc-
ture and a nur .. v of software probes.

The Virt al M achine Manager (VMM) component is responsible for man-
aging the comp.. ‘e life cycle of the virtual machines that are deployed in a
specific ir.ras’ cucture provider. The goal of the Energy Modeller is to gather
and mana, ~ ene’ gy related information throughout the whole Cloud Service
lifecyr’c and C.oud layers. This components core responsibility is to pro-
vide nergy 1sage estimates by presenting the relevant KPIs for a virtual
machii.~> dev ,oyment on the infrastructure provided, see Section 3. This will
i clude ~ost trade off analysis based on sources such as prior experience, the
aplicatin profile as defined in the SLA, which is subsequently translated
into L...rastructure level KPIs, and finally from current up to date monitor-
in', w.formation from the deployment environment. The SLA Manager is




responsible for managing SLA negotiation requests at Ia-.3 le el. "¢ interacts
with the VM Manager to get the status of the available . ources in order
to determine the SLA offer and the Pricing Modeller .o ass’en a price to the
offered terms. The goal of the Pricing Modeller is 1» provi e energy-aware
cost estimation related to the operation of the phy<i~al . =~ .rces managed by
the IaaS provider and used by specific VMs, see £ actic .. -~ The Infrastructure
Manager (IM) manages the physical infrastructu.. and -edirects requests to
hardware components. It maintains lists of har< ~are energy-meters, physi-
cal cluster nodes, network components anc storage devices. External com-
ponents can obtain and manipulate the c¢*ate . *’.e infrastructure through
a common API that is independent of the ac'mal hardware. The IM pro-
vides power consumption information . * each cluster node. Furthermore,
it IM requires an authentication for all opei. “ions which ensures protection
against attacks as well as a sufficient “ep .ravion of different parties. Finally,
the ability to self-adapt at opers‘ion v me which is supported by the Self-
Adaptation Manager (IaaS SAM) i 1..~ded to keep the cloud infrastructure
in an optimal state during its ~»erat, .

2.4. Layers Interaction

The focus on perform: ace, ¢ *st and energy can be seen in each layer, with
each component adding "~ the ubility of the overall architecture to adapt
[4]. The SaaS compo .ents u ‘ only support the energy efficiency goal but
provide means of par <agi .g C"oud applications in a way that enables provider
agnostic deployme it ti.°nk, to the interaction with the PaaS Application
Manager througlh “he Application Uploader.

The captured appu. ~tion requirements are realised in the PaaS layer by
the applicatio. m nager, which enables the deployment of the application on
a cloud infre. “rv ture thanks to the Application Scheduler. Self-Adaptation
then conti ues in “he PaaS layer through the collaboration between the Ap-
plication nar ager and other key components, e.g. the Self-Adaptation man-
ager. The . A r.anager continually monitors SLA conformance with the aid
of thr Application Monitor while the Self-Adaptation Manager makes the
decis s of v hen to adapt the application through horizontal scaling.

™t ".aS layer, the VMM is at the heart of the adaptation at this layer.
I nlike \he PaaS Layer that focusses on application level metrics the VMM
fc ~uses ' n optimising the VMs both at deployment and again at runtime.
In oraer to do this it utilises energy and pricing modellers as well as key
pr ctormance data from the infrastructure monitor and performs rescheduling
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in order to adapt either on particular events such as sub aiss’on «“new VMs
or periodically.

3. Energy-Aware Virtual Machine Model

The power consumption of a PM can be dir actly .. ecasured and mainly
consists of two parts, the idle and active power. ." ¢ idle power consumption
is consumed when the PM is turned on but nov "nniung any workload, and
the active power consumption is the indured powe - to the PM when it is
running some workload. Thus, the total now." ¢~ asumption of the PM is
equal to its idle power consumption plus its «. *ive power consumption.

As the case with the PM, the tota. nower consumption of a VM equals
its idle power consumption plus its active pc ver consumption. However, the
power consumption of VMs is difficu.” to «..tify and not directly measured.
Hence, the power consumption of VMs an be inferred from their underlying
PMs, which is still difficult to achi v

A PM can run one or monv V. 's at the same time, and these VMs
can be homogeneous or heterog neous based on their characteristics, e.g.
the number of Virtual CPUs (vCPUs) for each VM. Thus, these conditions
should be taken into cons’ iera.’ »n when modelling and identifying the power
consumption for the VM.~

Different energy m sdels «.>< mechanisms have been introduced in previ-
ous work to identifv the ene~gy consumption of VMs based on the energy
consumption of th-ir « der’ying PMs. Some of these models, as presented
in [8], only attril -te the rMs active energy to the VMs. Other models, as
presented in [9] uttrib. = both of the PMs idle and active energy to the VMs.
Nevertheless, * ue. = introduced models do not consider a fair attribution the
PMs idle anc act’ve energy to homogeneous and heterogeneous VMs running
concurrent’y.

Thus a r:w energy-aware model is introduced to overcome the above
limitations f th: existing VM energy models. This new energy model at-
tribut _s che Pivis idle and active energy consumption fairly to homogeneous
and | eteroge 1eous VMs running on the same PM.

Ma._ - ~f che existing approaches model and identify the energy consump-
t on in "Ms, as in [10, 11], and the energy consumption in VMs, as in [12, 9],
L.~ consi iering only the CPU utilisation. Understanding how the resource
usage atfects the power consumption is required. Further, an experimental
st.ay was carried out to investigate the effect of the resource usage (CPU,
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RAM, disk and network) on the power consumption. The find ng,. (13, 14, 15]
show that the CPU utilisation correlates well with the po. »r consumption,
which is supported in other work, for example [11, 16 1/]. Thus, the work in-
troduced in this paper follows the same approach an ' takes ato account the
CPU utilisation only when modelling and identifyir~ the - _rgy consumption
for the VMs.

The energy-aware model introduced in this vap .c wo s by fairly attribut-
ing the PMs idle energy to VMs based on the nu ~ber of vCPUs assigned to
each VM. As shown in Equation 1, PM xge. - is the idle power consumption
of the PM where the VMs are hosted; V Mzpg., ~— pous is the number of the
vCPUs assigned to the given V Mx; V M count -~ the number of VMs running
on the same PM; and V Mygeqcpus is - "e number of vCPUs assigned to a
member of the VMs set hosted by the same .*M. In this way, the idle energy
of the PM is fairly attributed to ho. og ncous and heterogeneous VMs by
considering the size of each VM i~ tern. : of the vCPUs assigned to them.

VMxRequPUs

ZVMcount

VMzigepwr = PM: oo, ¢ (
y=1 VMyRequPUs

(1)

Further, the PMs active e .c1 - is fairly attributed to the VMs based on the
VM CPU utilisation as vell as t 1e number of vCPUs assigned to each VM.
As shown in Equation 2, Pun.~r ,, is the total power consumption of the PM,
from which the PMs 7 ile v ower is deducted in order to identify the PMs active
power; VMxyy is tne PU utilisation of the given VMx; and V My is
the CPU utilisati m of a wember of the VMs set hosted by the same PM.
This way, the a_cive .~ergy of the PM is fairly attributed to heterogeneous
and homogene ... VMs by considering the VM CPU utilisation and number
of vCPUs ag gne ( for each VM.

VM T ActivePwr = (PMmeT - PMxIdlePwT) X

V M utitx RequepUs
( GO ) 2)

V M count
p V My wtitx RequePUs)

Therei e + e total power consumption for each VM at any given time can
Iz iden’ified by summing up its both idle and active power consumption, as
s own ir Equation 3.

VM.’Epr = VMZE]dlngr + VMxActivePwr (3)
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Hence, the presented energy-aware model can fairly at’cibv.e . e idle and
active energy consumption of a PM to the same or differe.. sizes of VMs in
terms of the allocated vCPUs for each VM. For inste ice, when both a small
VM with 1 vCPU and a large VM with 3 vCPUs ar ® being ully utilised on
the same PM, the large VM would have triple tho vai.  °. terms of energy
consumption as compared to the small VM. This vay ’.ic =nergy consumption
can be fairly attributed based on the actual phys.cal CF U resources used by
each VM. Further, the presented model has re. ~alea that a large portion
of the VMs total energy represents idle er ~rgy, wl ich is attributed to the
underlying PM idle energy. Thus, attrik “ting ‘> . PMs idle energy to the
VMs, which is already considered in the propc ~d model, is very important,
especially to alleviate the idle energy cu. *s.

4. Energy-Aware Cost Predictio." ¥ camework

Cost mechanisms offered by C'ou? service providers have become even
more sophisticated, as custorrers ar > charged per month, hour or minute
based on the resources they uuv.’sed. Nevertheless, there are still limited
as customers are charged based on a pre-defined tariff for the resource us-
age. This pre-defined te it & es not consider the variable cost of energy
[2]. Measuring or predic ‘ng the current power consumption is difficult and
cannot be performed cirectly ~* the VM level. Consequently, estimating the
cost of cloud services inc’adirg the energy consumption can help the service
providers offer suitxbic 'erv’ces that meet their customers’ requirements.

Therefore, an “mergy-aware cost prediction framework that aims to pre-
dict the workload ana , ~wer consumption as well as estimate the total cost of
the VMs duri' g . >rvice operation is introduced. The VMs workload (CPU,
memory, dis! anc network) is firstly predicted. Then, the predicted VM CPU
utilisation ‘s cor. 'ated to PM workload characterised by (CPU utilisation)
in order ’o es.imeate the PM power consumption, from which the predicted
VM power st nption would be based on. After that, the total cost of VMs
is esti nated based on their predicted workload and power consumption.

A rdepict din Figure 4, this framework includes five main steps to predict
the V.- = _rkload and power consumption, then estimate the total cost of
V Ms. T~ achieve this aim, the following steps are required [15].
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Figure 4: Energy-Aware Cc * 7__Zl ..on Framework.

4.1. VM Workload Prediction

The first step of the framewc - is t« predict VM workload for the next
time interval, which is the requested nu mber of VMs along with their capac-
ity in terms of (vCPUs, mem. ., "ek and network) to execute the applica-
tion. Using the Autoregressive Inic ~rated Moving Average (ARIMA) model,
the VM workload is then nredicted based on historical workload patterns
retrieved from a knowled se datc base. There are five different types of work-
load patterns that can L. expe ienced in cloud applications [18]; and two
types of these worklos d patter..s, namely static and periodic, are considered
for the historical da ~ tc be sed in this framework. A static workload pat-
tern occurs when .1 app. = ¢ion is experiencing the same and stable resource
utilisation over <, | ~riod of time. A periodic workload pattern can occur
when an application is :xperiencing repeated resource utilisation peaks in
time intervals |18

The ARIN.A model is a time series prediction model that has been used
widely in afferent lomains owing to its sophistication and accuracy [19]. A
number « < we .k, ¢ in [20] have used ARIMA model to predict workload in the
cloud compu ‘n | domain; though their objectives do not consider predicting
the e .ergy « msumption. Hence, the same approach using ARIMA model is
appliv 1in th s work to predict the workload, but with the objectives toward
pr Jicting che energy consumption and estimating the total cost of VMs.
1 nlike o her prediction methods, like sample average, ARIMA takes multiple
in, ts <3 historical observations and outputs multiple future observations
'~nicting the seasonal trend. It can be used for seasonal or non-seasonal
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time-series data. The type of seasonal ARIMA model is ised m .'.is work as
the targeted workload patterns are reoccurring and show. o seasonality in
time intervals. To use the ARIMA model for predictir | the VM workload, the
historical time series workload data has to be statio1 ary, ot) erwise Box and
Cox transformation [21] and data differencing meth~s «. - - »ed to make these
data stationary. Further, the model selection of 2 RIM .1 -an be automatically
processed in R package [22] using the auto.arw..a fu' ction, which selects
the best fit model of ARIMA based on Akaike 1. “ormation Criterion (AIC)
or Bayesian Information Criterion (BIC) ve'ue [19].

After predicting the VM workload u.‘ng . ~ ARIMA model based on
historical data, the next steps take place to . -edict the PM workload and
the PM/VM power consumption using . ~eression models.

4.2. PM Workload Prediction

Once the VMs workload is pre-**cted, “he second step is to understand how
this workload would be reflected ¢ > physical resources and predict the
PMs workload, which is PM C"™TT ut,isation. This would require measuring
the relationship between the nui.’ er of vCPU and the PM CPU utilisation
for a PM. Therefore, the relationship between the number of vCPUs and the
PMs CPU utilisation is ¢’.aracy rised for the targeted PMs. For the purpose
of this work, two differc + PM¢ (Host A and Host B) in a cloud testbed
have been characteris .d witn, egression models, as shown in Figure 5 and
6. This experiment was carr'ed out on a local Cloud Testbed by stressing
the CPU to its fu' cap.~it using the Stress-ng tool [23]. More details on
the experimental .+ up are found in Section 6. Linear regression model has

100

y=23 33x+ 5347 100
& T =097 80
60 [ 60

CPU Utilisation (%)
CPU Utilisation (%)

4 ~ w0
W y = 12.266x + 2.5049
20 / 20 R?=0.99983
0 0
0 1 2 3 a4 0 2 4 6 8
No of VCPUs No of VCPUs

Fignre o M mber of vCPUs vs CPU Figure 6: Number of vCPUs vs CPU
T lisatic 0 for Host A. Utilisation for Host B.

beew .pplied to predict the PM CPU utilisation based on the used ratio of
tb - 1 cquested number of vCPU for the VMs with consideration of its current
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workload as the PM may be running other VMs alre dy. 1... following
Equation is used (4):

V MCount /My
Pre Ut
PMzpreavii = (a0 X ( Z (VMYypegopus X - — o ")) +8)
y=1 7
+ (PMzcyruii — PMxigev, (4)

PMzprequi is the predicted PM CPU utilisatic >+ « is the slope and S is
the intercept of the CPU utilisation. The VMyg. ,cpus is the number of
requested vCPU for each VM and V My, yu, © the predicted utilisation
for each VMs. The PM xcyrriei is the current 1 MM utilisation and PM X rgeui
is the idle PM utilisation.

4.8. PM Energy Consumption Predi. t101

After predicting the PMs wor'-load, -he third step is to predict the PMs
power consumption based on the c. vi 'ation of this predicted workload with
PM power consumption. Thus +he ccnsidered PMs need to be characterised
in terms of their power consump.‘on 1n relation with CPU utilisation using
regression models, as shown in Figures 7 and 8. Therefore, the PMs predicted

S0

s 120 il 80 . = 3
= 100 — 570
2 - % 60 #
B 8 S
E 8 ’ B - 3 2
3 _ y » g 50 y = 6E-05x? - 0.0167x? + 1.5712x + 28.3
§e ,/.< 0720 Sjpes g a0 R?=0.99795
: R® 0.9y. 3
g 20 g 30
e & 20
2 10
0 0
o £ s0 s 100 0 20 40 60 80 100
Foro Cilisation (%) PM CPU Utilisation (%)
Figure 7: CPU il ation vs Power Con- Figure 8: CPU Utilisation vs Power Con-
sumption for Host .. sumption for Host B.

power cou. - upt'on, PM T peqpwr measured by Watt, can be identified using
a line . relatiown. with the predicted PMs CPU utilisation, as shown in Figure
7 anc in Equ tion (5). « and f are the slope and interceptor values obtained
from ti.~ re- ression relation.

PMxPreder - ((X X (PMxPredUtil) + B) (5)

However, not all existing PMs necessarily follow a linear power model with
their CPU utilisation, since the PMs are heterogeneous in nature, as shown
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for example in Figure 8. In this case, other regression mor .els, ,uc.. as polyno-
mial, can be used to characterise the relation between the p. 7er consumption
and CPU utilisation of the targeted PM, as shown ir rquatiou (6).

PMxPreder = (()4(P1\4J:PredUtil)3 - rY(PA:TD'r‘ﬂ Jtil)Q
+ 0(PMzprequii) + 1) (6)

Where «, v and ¢ are all slopes, § is the inte. ~ept ~» . PMXppequiir is pre-
dicted PM CPU utilisation.

4.4. VM Energy Consumption Prediction

The fourth step of this framework is tn 2ttri~ e the predicted PMs energy
consumption to the new requested VM a. 1 to the VMs already running on
the physical host based on the eners = ~ware inodel introduced in Section 3.
Hence, the predicted power consumpt. r for the new VM, V Mz peqpwr, can
be identified for the next interval -me u ing Equation (7).

VMxRequPUs

V M count
Zy:l VMyRequPUs

A
+ (D [frf.Preder - PM-Z.IdlePwr)

£ V M (preavtitx RequC PUs) ) (7)

'\ VM ount
Ly, y VMy(PredUtil X RequCPU s)

VMxpreqpwr = PMua_nepy, < (

)

Where VMzxp,eqpur = *ae 7redicted power consumption for one VM mea-
sured by Watt. V "[Zgeque. s is the requested number of vCPU and VM pyequia
is the predicted v “'PU utilisation. Z?‘:ﬁcou"t V Myprequsi is the total of
vCPU for all *™Ms on the same PM. The PMzgepy, is idle power con-
sumption an’. P} xp,eqpwr 1S the predicted power consumption for a single
PM.

4.5. VM Tot il C st Estimation

The Snar . p in this framework is to estimate the total cost of the VM
basec on ti > predicted VM resource usage and the predicted VM power
consu. "ptior The energy providers usually charge electricity by the Kilo-
w v per nour (kWh). Therefore, converting power consumption to energy
i requir d using the following Equation (8):

VMIAUgPreder Times
1000 3600

(8)

VMxPredEnergy =
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To estimate the total cost for the VM [14]. The followi".g F jua.’on is used
(9):
VMJIPTG Util

100
CostpervCPU x Time))

)

VMxEstTotalCost - ((VMmRequPUs X

x (

+ (VM2 prearamusage X (C - otper B x Times))

+ (VM preapiskvsage X (Co toerGB x Timey))

+ (VM2 preanetvsage -~ ‘Costy :rGB x Timey))

+ (VM preagnergy X < stperkWh) 9)

Where VM gsirotaicost is the estimated 1“2l cost of the VM. The V Mz gequerus
is the number of requested vCPUs fr~ each v M and VM xp,cqu is the pre-
dicted utilisation for each VM times .ne cost for the requested vCPUs for a
period of time. VMZpreqgramusae, 1S th predicted resource usage of RAM
times the cost for that resource tcr « veriod of time and so on for each
resource such as CPU, disk ¢ i ~~tvork. VM pregpnergy 1 the predicted
energy consumption of the VM ti.es the electricity price as announced by
the energy providers.

5. Energy-Aware Prici. ~ S nemes

Cloud IaaS/Paa‘ pro ider s mainly charge for their resources which come
in the form of VM- wiu.. <o cific performance characteristics on the basis of
fixed rates per ur . of time. The rate levels depend on specific VM character-
istics, such as CPU sp.~d, network bandwidth, memory and storage space.
At the same t.me applications take decisions which can have an important
impact on b.“h < aergy consumption and performance. An example of such
a decision s the . el of parallelism in the event of multiple tasks scheduled
on many diff rent VMs. The application has the choice of the parallel ex-
ecution ot « nur.ber of tasks on many different VMs instead of using only
a few whick may incur unnecessarily high energy costs by requiring a large
numl =r of p ysical servers to host the VMs. These increased energy costs
are ~ari. ' over to increased laaS/PaaS prices and so lower profit levels for
t 1e pro. ‘ders.

One -andidate solution could be the adoption of energy-aware pricing
hv tne cloud providers in order to provide the necessary incentives to the
¢ stomers for achieving a more efficient resource usage. Under such a scheme
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the applications will be aware of the economic impact of * aeir uec. ion and so
they will have the incentive to take energy costs into accou..” e.g., when they
decide on the level of parallelism. Indeed, task sched .ing et tue application
level may be more energy and performance effective t an sery >r consolidation
by the IaaS/PaaS providers, since it is the appli#atic. = . hich know what
should be run in parallel and what should not.

However, additional information need to be p.ovide « by the existing in-
frastructure (e.g., energy consumption monitorin, ' to support such schemes.
In response, the Pricing Modeller compor =nt is r sponsible for providing
energy-aware price estimation and billing ~elav. ¥ o the operation of appli-
cations or VMs associated with them, see Fig.. = 3.

The previous sections have focusea = n aspects related to the prediction
of the energy consumption, as well as the .-sulted cost. As a next step,
innovative energy-based pricing sche. nes arc proposed, which were initially
proposed in [24].

Static pricing: In this schew e, “he price does not depend on energy
consumption and depends on)- ~n V.1 characteristics, i.e.,

1 s
p== / passic (V M, 1) di (10)
- 0

Where VM is a paramc °r ide .tifying the characteristics of the VM and
PDstatic (V M, 1) is the st atic pric  of VM at time ¢. If the static price does not
vary in time, i.e., p (" M ¢) is constant in the time parameter ¢, then no time
averaging is necess «ry.

Two-part t . ff: The actual form of IaaS price is comprised by two
parts: a fixed one, de¢, »nding only on static information of a VM, and a
dynamic one, vhi h depends on the average power usage. In a simple scheme,
we consider . fi- ed part based on the static VM characteristics, plus the
average pc wer usc e multiplied with the price per Watt-hour (Wh). Thus,
the price p o a VM (starting at time 0 and up to time 7') is computed by
the formula.

1 [T 1 [T
P == / Dstatic (VM t) dt + — / Penergy (1) W (£) dt (11)
T Jo T J,

VVhere ; pergy (t) is the energy price at time ¢, and W (t) is the power usage
0. the V J at time ¢.

‘1wo-part tariff with energy-savings discounts: A disadvantage of
tr e dynamic usage price is that the actual energy that an application may
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use is not known by the developers at the time the SL 1 is esv.blished. A
simple alternative is to pay a lump sum and then apply a . scount based on
the actual power consumption. Hence, the followins two-part price can be
used: « is a fixed price based on static info of a VM which & so incorporates
energy costs through the historical average power ~ons.~ _cion or based on
the prediction mechanisms presented in the prev’'bus - s ‘ons, and b is a price
discount depending on the level of power savings ..iow t 1e historical average
or prediction. In this way it is not possible to p. - more than the lump sum
initial payment. More specifically, the price » is con puted by the formula:

1 T
p= T/ pstatic(VMv t)dt
0

1t 1y 20
+ min (T / penergy (t)W(t)dt R / penergy(t>Wnominaldt7 O) (12)
0 + Jo

where, W, omina 18 the nominal ave "age power consumption, i.e., the power
consumption already accounteu ‘or 1w the static price. Any average power
consumption above W,,,mina does nov increase price above the (time average)
static price. Deviations b _iov Wi omina result into a proportional discount.
The function min (z1,x_ ...) yiclds the numerically smallest of the x;.

Linearly increas mg p i ing: The two-part tariff and energy-saving
discounts pricing sch :me* assume that the price of energy could potentially
vary in each epoch. hc - »ver such schemes do not consider any direct relation
between the ener v price «nd the total energy consumption. For example,
an energy provicer wo *1d reasonably like to avoid facing energy consumption
bursts (e.g., d’ ... 2 summer). Most of the energy providers usually provide a
lower price  r er ergy unit during the less burst periods (e.g., day / night).
Motivated by v..'s approach, the price per energy unit based on the total
consumec ene gy in considered to be a linear increasing function. Other ap-
proaches \ ., ex ponential function) may be also applied, in order to capture
the nc .on of sc.ting higher price per energy unit, as more energy is consumed
durir 3 an ep ch. The slope of the charging function will be set by the [aaS
provia.~ ba-ad on the factors consisting his own cost function (e.g., charg-
i".g schrme or/and SLAs between IaaS and energy provider). For the linear
& 'Sumpt Ol Penergy can be written as cW (t), assuming that c is a constant
pala...ceer set by the IaaS provider, showing how aggressively pepergy Will
1N rewse with respect to the total energy consumption. In order to prevent
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TaaS provider to charge arbitrarily high prices, an uppe bo’ na ‘s set, such
that ¢cW (t) < Denergy.upper- Thus, the price p is computed «_ the formula:

1

T
p= TA pstatic(VM; t)dt

1 /7 I
—|—min(f /0 cWZ(t)duT /0 Pere uupp )W (t)dt) (13)

95th percentile rule-based pricing: The ‘5th percentile rule is a
widely used pricing scheme in telecommunu ~tions for charging the transit
traffic sent by lower-tier ISPs. By empl ... v scheme, transit ISPs intend
to penalise lower-tier ISPs in case of trathc hursts. A similar pricing scheme
could be employed by IaaS provide: - 1. | ~nalising bursts of the consumed
energy. To implement this scheme. it is > ,sumed that the energy consumption
within the infrastructure of an lc«. nrc -ider is measured or sampled and
recorded (e.g., log file). At the end ¥ each billing cycle (e.g., every month),
the energy consumption sampic.” are orted from highest to lowest, and the
top 5% of data is thrown away. The .iext highest measurement is the 95th%,
and the customer will be .. based on that energy consumption. Let [* (¢)
denote the 95th% meas' rement >f the energy consumed by the customer at
time t. [* is then defind as . ~a- {I | P (W > 1) > 0.05}. Thus, the price will
be:

1 /T I .
p== Pstatic (VM, t) dt + T /0 DPenergy (t) l (t) dt (14)

Ju

6. Experim :nt: | Set Up and Design

This se .tion u.cribes the environment and the details of the experiments
conducte « in orde~ to evaluate the work presented in this paper. In terms of
the envirow. "ent, the experiments have been conducted on the Leeds Cloud
testbr d. Thre aetails of this testbed and the experiments will be discussed
next.

(.1. Cl ud Testbed

The loud testbed consists of a cluster of commodity Dell servers, and
each one of these servers has Centos version 6.6 installed as its operating
svstem (OS). Two of these servers, one with a four core X3430 Intel Xeon
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CPU (Host A) and the other with an eight core E3-'230 v. Tntel Xeon
CPU (Host B), have been used for the experiments presew. 1 in this paper.
Also, each server has a total of 16GB of RAM and _o5UGP ot SATA HDD.
Additionally, the testbed has a Network File Syste.1 (NFS share running
on the head node of the cluster and providing a ®TE . -* .. storage for VM
images.

The architecture of this testbed is shown in Figare 9 The testbed utilises
OpenNebula [25] version 4.10.2 as the Virtual Ini. structure Manager (VIM).
For the Virtual Machine Monitor or Manage~ (VMM , the testbed uses KVM
[26] hypervisor.

Node 1 Node 2

Virtual Machine 1
Virtual Machine 2

rtual Machin 2
Virtual Machine n

Vi

Virtual b .
Manager

Virtual Machine
Manager

Privileged Virtual
Machine

Privileged Virtual
Machine

Vi alIntra.
Manager

jcture Shared

Storage

SSh

= T

Node n

Figure 9: Cloud Testbed Architecture.

6.2. Monitor. ~a frastructure

The re our-es u.age and energy monitoring on the Cloud testbed is shown
on Figur 10 At .he physical host level, each PM has a WattsUp [27] meter
attache to «.-c tly measure power consumption at per second basis for each
PM. "'he me sured power consumption are then pushed to Zabbix [28], which
is use ' for 17 sources usage monitoring purposes.. Additionally, Zabbix also
r Lwtors vne resources usage, like CPU, memory, network and disk, for each
 f the rvning PMs and VMs.
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Figure 10: Monitoring 1. “astructure.

6.3. Design of Experiments

The aim of the experiments is to ac monstrate that: 1) the energy-aware
model is capable of fairly att *,_*nc¢ the PMs energy consumption to ho-
mogeneous and heterogeneous VM. and 2) the energy-aware cost prediction
framework is capable of predicting the workload and power consumption as
well as estimating the tc.al cos™ of the VMs at service operation based on
historical static and pericic we kload patterns.

The size of the V. i< ideatified by its capacity in terms of the num-
ber of vCPUs and : *errory 1ze. For example, if two VMs have the same
number of vCPUs on e.-t, then they are considered homogeneous VMs.
If one has one ~ U and the other has two or more vCPUs, then they
are considered heteroge.ieous VMs. Rackspace [29] is used as a reference
for the VMs _ont zurations. The experiments consider three sizes of VMs,
VM_A(small), V' I_B(medium) and VM_C(large) are provided with different
capacities The V. {s are allocated with 1, 2 and 3 vCPUs, 1, 2 and 3 GB
RAM, 17 GF dis'. and 1 GB network, respectively. The cost of the virtual
resources arv e according to ElasticHosts [30] and VMware [31] prices are
folloved: w. ere 1 vCPU = £0.008/hr, 1 GB Memory = £0.016/hr, 1 GB
Stora_e = £/.0001/hr, 1 GB Network = £0.0001/hr; and the cost of energy
= 20.14,xwh [32].

In te 'ms of evaluating the energy-aware model, the first experiment is
deignes to run VM_A(small), VM_B(medium) and VM_C(large) on a PM
Mact A), and to run the same types of these three VMs on a different PM
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(Host B). The aim of this experiment is also to expl re }ow ‘he energy
consumption is attributed to the same types of VMs w.. n being run on
different PMs. The software tool Stress-ng is used .ong wita cpulimit to
generate synthetic workload on the VMs at any levei of CPU utilisation. All
the VMs used in this experiment are designed to he '~ Zor 15 minutes at
the first stage, and then actively run at 80% of JPT" u ilisation for another
15 minutes at the second stage. This way can he.p to xplore how the idle
and active power consumption of the PM are « *ributed to the VMs over
time. All the experiments are repeated five *imes an 1 the statistical analysis
is performed to consider the mean value. of 1.~ -~ esults and eliminate any
anomalies.

To evaluate the energy-aware cost , rediction framework, a number of
experiments have been conducted on the te.*bed to synthetically generate
historical workload data. The historic 1 ¢ wa has been generated to represent
real workload patterns of cloud 7 ~plice -ions, including static and periodic,
by stressing all the resources (CPU 1. mory, disk and network) on different
types of VMs with the Stress- -7 too, The generated workload of each VM
type has four-time intervals of " minutes each. The first three intervals
will be used as the historical data set for prediction, and the last interval
will be used as the testir g dav set to evaluate the predicted results. The
prediction process works ~fline iy firstly predicting the VM workload using
the auto.arima func 1on in 2 package [22] to automatically select the best
fit model of ARIMA pas .d o'. AIC or BIC value. Once the VM workload is
predicted, the prosess .. th n completed by going through the steps of the
introduced frame . ~rk to consider the correlation between the physical and
virtual resources and . nsequently predict the power consumption and then
estimate the t,ta. cost of the VMs running on different PMs

7. Evalu .tion a,.d Discussion

This sc. ron presents the evaluation of the energy-aware model and the
energ -aware cost prediction framework. The figures below show the pre-
dicte ' result for three types of VMs, VM_A(small), VM_B(medium) and
VM G\l =, each instance running on two different PMs based on a histori-
c il perit dic workload pattern. Because of space limitation, only VM_A (small)
a~d VM C(large) results are shown.
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7.1. Energy-Aware Virtual Machine Model

The conducted experiment shows the results of enerev co. sumption attri-
bution to heterogeneous VMs running on a PM (Hor . A). .* dditionally, this
experiment also presents the results of attributing th same - ypes of VMs on
another PM (Host B).

7.1.1. Host A

The mean power consumption and CPU util. *ion for VM_A(small) and
VM_C(large) running on Host A are shown ‘» Figure 11 and 12, respectively.
As designed, all the VMs are idling for *he 1n.~* 15 minutes and actively
running with 80% of CPU utilisation for the 1. maining 15 minutes.
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tion Attribuve ' to .ach VM. per VM (for 30 minutes).

F ~ure 13 shows the distribution of the PMs mean power consumption to
all *hese "'.ee VMs over time, and Figure 14 shows the mean energy con-
s imptic > per VM in terms of their idle, active and total energy. As the VMs
a. ~ hete ogeneous, therefore have different attribution of the idle and active
anergy consumption, which fairly corresponds to their size. The energy con-
srmption of VM_A(small) is about two times smaller than VM _B(medium)
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and three times smaller than VM _C(large), which is f-urly vas.d on their
CPU utilisation and sizes defined by the number of vCPU. ~ach VM has.

7.1.2. Host B

The mean power consumption and CPU utilisation J>= Y"v[_A(small), and
VM_C(large) running on Host B are shown in Fig uares " and 16, respectively.
Recall, all of the VMs are idle in the first 15 m.. .tes : ad actively running
with 80% of CPU utilisation for the remaining .~ muuutes. Figure 17 shows
the distribution of the PMs mean power consumptic n to all three VMs, and
Figure 18 shows the mean energy consumy *ion , »r v M in terms of their idle,
active and total energy. As the VMs are hete. ~eeneous in terms of the size,
they consequently have different attri. 'mion ot the idle and active energy
consumption. The energy consumption of vM_A(small) is about two times
smaller than VM_B(medium) and v vee u..ies smaller than VM_C(large),
which is fairly based on their CPU wutilis. tion and sizes defined by the number
of vCPUs each VM has.
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'I'ne conducted experiment has shown the energy consumption attribution
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for three heterogeneous VMs running on Host A and Fost » a.d revealed
that they can have different attribution of energy consumjp on based on the
power characteristics of the underlying PM. Host B "ias less iule and active
power consumption than Host A; therefore, when tl =se thre 2 types of VMs
are running on Host A, they have more energy cor~um, “* .1 as compared to
when running on Host B, as shown in Figures 4 a- 4 '8. Hence, enabling
energy-awareness at the VM level can help the cioud service providers to
monitor the energy consumption of the VMs ain' it necessary, migrate the
VMs to another host to maintain their ene~v goals

Further, the conducted experiment hac reve.'~ chat a considerably large
portion of the VMs total energy resides on tu '+ idle energy, which is being
attributed from the idle energy of the u. derlying PM. Thus, attributing the
PMs idle energy to the VMs, which is alre. 'y considered in the proposed
model, is very important, especially .~ a! eviate the idle energy costs for the
PMs, as will be discussed next.

7.2. Energy-Aware Cost Predi~tion . amework

The conducted experiment s ws the prediction results for three types
of VMs, VM_A(small), VM _B(medium) and VM_C(large), based on static
and periodic workload pe .terns o two different PMs, (Host A and Host B),
having different characte “stics. The aim of this experiment is to evaluate
the capability of the provosc’ framework to predict the workload, power
consumption and es 1ms.e t'e total cost for a mix of VMs with a mix of
workload patterns whew. he’ag run on different PMs.

In terms of tF . historical and testing data sets, Figures 19 and 21 depict
the results of the predi “2d versus the actual VMs workload, including CPU,
RAM, disk ar 4 n twork usage for the VMs. Despite the periodic utilisation
peaks, the p.. dic.ed VMs CPU and RAM workload results closely match the
actual resr.ts, wn.h shows the strength of the ARIMA model for predicting
based on aist rice' seasonal data, repeated patterns of the static and periodic
workload a.. ! giv ¢ a very accurate prediction accordingly. The predicted VMs
disk 7 ad ne*work workload are also matching the actual workload, but with
less ¢ ~curacy as compared to the CPU and RAM prediction results. This
car be ,__.tied because of the high variations in the generated historical
1 eriodic workload pattern of the disk and network not closely matching in
ec~h int’ rval, whereas the generated historical periodic workload pattern for
the KAM and CPU usage are closely matched in each interval. Beside the
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predicted mean values, the figures also show the high ar 1 lov v.7% and 80%
confidence intervals.

Table 1: Prediction Accuracy for VM_A' small).

Parameters ME RMSE MAF | T MAPE

CPU Utilisation 0.057922 0.638338 | 0.2.2995 ' 1176069 | 1.324204

RAM Usage 0.000060 0.000115 | 0. 1007 | 0115359 | 0.018484

Disk Usage 0.1188962 | 0.975295 | 0.84..85 | - ..49987 | 12.05513
Network Usage -0.015988 0.167085 | u. R950. | -2.02527 5.942

Power Consumption Host A 0.010496 0.10504 0.045. 5 | 0.029576 0.11785

Power Consumption Host B 0.010079 0.1110¢ 0.04925 0.017091 0.07599

Based on the predicted workload for each ™, their power consumption
is predicted via the remaining steps wii. ‘n the framework. Figures 20 and
22 show the predicted versus the act~1 resulw, of the power consumption for
VM_A(small), VM_B(medium), and M _C(large) when being run on Host
A and Host B, noting that the H -t B .~ more energy efficient compared to
Host A. Also, the predicted power ~o.. "mption attribution for each VM is
affected by the variation in t° - prea.~ted CPU utilisation of all the VMs,
hence the predicted power consu.. ntion of all the VMs is closely matched
the pattern of the predicted VMs CPU utilisation, as shown in Figures 19
and 21.

In terms of prediction ~ccur ¢y, a number of metrics have been used to
evaluate the predicted workloa.. (CPU, RAM, disk, network) and power con-
sumption for the VI« A’sma’1), and VM_C(large) based static and periodic
workload pattern s pre. n'ed on Tables 1 and 2 respectively. These metrics
include, Absolute 1 ~rcentage Error (APE) which measures the absolute value
of the ratio of the error . » the actual observed value; Mean Error (ME) which
measures the wer ge error of the predicted values; Root Mean Squared Error
(RMSE) whil' @ :picts the square root of the variance measured by the mean
absolute e ror: Mc n Absolute Error (MAE) is the average of the absolute
value of he .iffer ance between predicted value and the actual value; Mean

Table 2: Prediction Accuracy for VM_C(large).

[ T arameters ME RMSE MAE MPE MAPE
" CPU Utilisation 0.03765 0.299769 | 0.137823 | 0.309809 | 6.615192
}7 RAM Usage 0.000004 | 0.008671 | 0.002587 | -0.00675 | 0.107601
\7 Disk Usage 0.1838898 | 1.116114 | 0.733408 | 0.924781 | 12.64005

Network Usage 0.0657477 | 0.225631 | 0.132185 | -6.13982 | 17.56377
[ Power Consumption Host A | 0.026211 0.20869 | 0.095949 | 0.010313 | 0.11750
| Power Consumption Host B 0.000131 0.16633 0.062928 | -0.03101 0.13774
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Percentage Error (MPE) is the computed average of y:rce .cay errors by
which the predicted values vary from the actual values; a.. -~ Mean Absolute
Percent Error (MAPE) is the average of the absoluts value ot che difference
between the predicted value and the actual value ex Hlained as a percentage
of the actual value [33].
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This framework is also capav’'~ o1 c.timating the total cost for three types
of VMs hosted /running on two difte.ent PMs as shown in Figure 23, which
presents the estimated to*.. « st of the VM_A(small), VM_B(medium), and
VM _C(large) running o differe t PMs (Host A and Host B). As the VMs
are heterogeneous, th refoi. t'e costs of VMs are different. The cost of
VM_A(small) is abo .t t-/o times smaller than VM_B(medium) and three
times smaller than V. " C(l-rge) when there are running on Host B, which
is fairly based on heir rescarce usage and energy consumption by each VM.
The energy effic ency ~f Host B plays an important role to reduce the total
cost (Cost Sav'...) of the VMs comparing to Host A as shown in Figure 24.

Despite t’ e cc nbination of different types of VMs with different workload
patterns ruaning ~n the different PMs, the accuracy metrics indicate that the
predicted VM3 workload and power consumption achieve good prediction
accuracy . 'c.ag v ith the estimated total cost.

7.8. “ricing Schemes Evaluation

The @02' of this analysis is to compare the economic implications of the
cwoice ¢f pricing scheme by a service provider. In particular, the static and
e vergy-b ised pricing schemes presented in the previous section are compared.
To . onis, models of cloud service providers sharing the same capabilities
ar . ..1e same cost structure are considered, their only difference being the
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pricing scheme adopted by each. The basic model assm mpt on. are briefly
presented. The detailed assumptions of our model are pre. nted in [24].

TaaS/PaaS provider: it is assumed that the Pas 5 laye~ is offered by the
same economic entity, which offers the IaaS. Thus, w renever the reference to
[aaS means the combination of IaaS/PaaS. Each T~aS, >3 provider has an
infinite number of physical servers at his dispos I. F ... server is populated
by VMs belonging to possibly different applicatic.us ar 1 the CPU speed is
split equally among the VMs. The provider is «™le to freely scale, i.e., the
server consolidation policy is such that the ~number « f active physical servers
scales in proportion to the number of VM. in 1.~ ¢ .frastructure. A two-part
tariff adopted by the provider if further consiu red.

User demand for application rc.mests: Each application has a dif-
ferent throughput demand (rate of instructio. 5 or requests to be executed at
the VMs of this application), which ¢ 2cr” ascs to zero if the average process-
ing delay of each instruction/req est b ~omes too high. It is assumed that
the benefit decreases as response ¢-i.~ increases. If the delay becomes too
high, the benefit will become » ~~ative and requests will start balking at this
point.

Applications: It is assumed that each application is employing a num-
ber of VMs. The cost for the aaS provider of this application depends on
the parameters of the tv. ~-part ariff employed by the IaaS/PaaS provider,
while its revenue is I sed o he number of the completed requests (e.g.,
euros/request). The app icat’on decides how many VMs to buy from a par-
ticular IaaS provid ir su h thiat its profit is maximised.

Hence, the ec .. 'mic quantities considered are:

e The leve’ .” profits for each type of provider.
e The leve. - ¢ payments made by the customers of each provider type.

e Th . lev .l of overall satisfaction of the customers of each provider type.
Since .“e omparison depends on the market structure; the actions of
servier providers under two extreme cases are considered, which are 1)
monop: ly, and ii) perfect competition.

The main outcomes of the analysis are summarised below:

Incer tive to adopt energy-aware laaS/PaaS layers under monopoly: The
prou. of IaaS providers in a monopoly increases if a two-part tariff incor-
pc.avng energy costs is used, compared to a static pricing scheme. Thus,
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laaS/PaaS providers have the incentive of adopting ener zy-a vai. TaaS layer
regardless if the upper layers exist or not.

Incentive to adopt energy-aware IaaS/PaaS lay rs urder competition:
The two-part pricing scheme incorporating energy c sts is ¢ viable strategy
under competition: the IaaS/PaaS providers obt~in « ' ure in a compet-
itive market. This is not true under the stati. pr’_ ..~ scheme, where an
IaaS/Paa$S provider cannot have a non-zero mark.. shar : and cover his costs
at the same time. This result implies that SaaS .. ~viaers are more profitable
using TaaS/PaaS providers which charge a>~ording ‘o energy consumption.
Thus, SaaS providers will be attracted to merg, = .are laaS/PaaS providers
even though the former are not aware of the enc. ~v used by their components;
their sole criterion being the resulting . ce.

Incentive to adopt energy-aware SaaS layc. - SaaS providers obtain greater
profits when they become energy-aw. re 0 « market of competitive energy-
aware laaS/PaaS. This is done t}~ough application-level scheduling of more
energy consuming requests on VM=z . siaing in more power efficient hosts.
As a result, IaaS providers cor “*»1e 1. be better off using the two-part tariff
even after SaaS providers start b.mg energy-aware.

The first part of our analysis considers whether energy-awareness
of IaaS/PaaS provid .rs 1> »rofitable for IaaS/PaaS and non-energy-
aware SaaS provide: ~ A pnn-energy-aware SaaS provider means that
decisions are not take. on tu. sasis of energy consumption. For example, a
SaaS provider is not abl to lecide which tasks to schedule on which VMs.
However, it decide, wi.~h "aaS/PaaS provider to use on the basis of total
price charged.

In our first scenaric it is assumed that the IaaS/PaaS provider operates
in a monopc asv ¢ market, where two different applications (in terms of
quality of se. -ice characteristics) request for TaaS/PaaS services. The profits
of a monor olistic "2aS/PaaS provider employing: i) a two-part tariff, which
incorpors ¢es nercy consumption, and ii) a static price are numerically eval-
uated. Fig. = 2', depicts the profits as a function of the maximum average
reque ¢ response delay tolerated by the users of application 1 (normalised by
the n aximur . tolerated delay for application 2). The profits brought by the
two mar. * Laff are always greater than those brought by the static pricing
s theme. They coincide only if the QoS characteristics of the two applications
a.~ the s ume. The greater the diversity between the applications, the greater
the airrerence in profits.

'I'ne second scenario considers the case of perfect competition among
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two laaS/PaaS providers. Under perfect competition wit iout enc.y costs, no
laaS/PaaS provider is able to make strictly positive proh.. because in that
case no demand will be available. This is because t'.e demand is attracted
by other providers, which choose to operate at a ‘'maller albeit non-zero
profit margin by slightly reducing their prices. Thrs a. = .rket equilibrium,
competitive TaaS/PaaS providers obtain zero profits a. 1 barely cover their
costs. Since the interest is the comparison of the c..ect ¢ i the pricing scheme
on competition, TaaS/PaaS providers are compa. 1 under the same charac-
terising parameters (including maintenanc: and en rgy costs) except those
concerning their pricing scheme.

As an exposition of the competition betw.~n IaaS/PaaS providers and
the effect of the pricing scheme, consi.~r an example which examines the
profits of two applications as a function o." their diversity. The users of
the applications are assumed not to v ler e average request response delays
above some value, which is speciSc to ~ach application. Figure 26 depicts
the payments per time unit incurrc o - each application under two different
pricing schemes: i) a two-part '~=iff. which incorporates energy consumption,
and ii) a static price. The horizo.."al axis represents the maximum tolerable
delay by users of application 1 (normalised to that of application 2).

For stringent delay re quire. ents (max tolerable delay is less than 0.3),
application 1 does not a. all use the IaaS/PaaS provider with static pricing
since the high costs ¢ «tweign "enefits. The latter hosts application 2 only,
at a competitive pri:e. WVhea the delay requirements of application 1 are
not so stringent, t'.e ac ~ar d rises and application 1 starts using the static
[aaS/PaaS provi . ~ but at a cost which is not competitive: application
1 payments exceed tuc ones offered by the IaaS/PaaS provider employing
a two-part te itt. For values of the max tolerable delay above 1, the less
tolerable use.~ b’ 1ong to application 2 now, and they bare most of the costs
in both Ia .S/Pa.” providers. Nevertheless, the static IaaS/PaaS provider
continues not to he competitive as the payments resulting for application 2
exceed thos by Jhe IaaS/PaaS provider employing the two-part tariff.

T .e serond part of the analysis considers whether energy-awareness
of Sa S prov ders is economically sensible. In order to make the effects of
en~ray-.  .eness clearly visible, the model is refined to allow for i) phys-
i:al hos s with different power efficiency, ii) requests with different energy
CMSUMY JL0M.

‘Lwo types of hosts are considered. Both host types consume the same
pr wer while their CPU idles. While active, type 1 host is more power efficient.
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Figure 25: IaaS/PaaS provider profits in r._mre zu: Comparison of payments by
a monopoly using a two-part tariff in- two ar lications to IaaS/PaaS providers
corporating energy charges (solid curve) as a function of application QoS diver-
and a static price (dashed). Slu,

The fact that type 1 hosts are mo. = nowc - efficient has an implication for the
VM scheduling policy of the IaaS/1 aa. provider. Since the latter strives to
have minimal energy costs, n. < ;= r efficient hosts are preferred to less
efficient ones. Thus, the VM schea. 'ing will try to allocate type 1 hosts first
to meet demand; type 2 hr-*< will be used only if it is not possible to meet
demand only by utilisin‘, type .~ hosts. This is under the assumption that
the VM scheduling algori.™m is allowed to freely reallocate all VMs on the
available hosts. It is f ath=r as,umed a unit rate of type I requests consumes
wy > 1 times the on of cype 2. The precise power consumption depends on
the host type the eques. i< executed.

As a next ste ., .= implications in power consumption due to the applica-
tion being enerov-aware or not is considered. First the ”legacy” case is looked
at, where an app cation has no information about the power consumption
of its compon. ~* 5. In this case, the application cannot differentiate between
the more < ad 'ess c.iergy consuming request types. Moreover, it cannot have
informat ~u .bov, the energy efficiency of its VMs. Thus the requests are
scheduled on “/7.[s independently of their type. Let us now consider how an
energ y-awai application allocates requests on its VMs. Since type 1 hosts
are m.re pov er efficient and type 1 requests are more energy consuming (as
W wq), an energy-minimising scheduling policy ought to place type 1 re-
cuests o type 1 hosts and use type 2 hosts only if necessary or for serving
(t. ~ les” consuming) type 2 requests. In the monopoly scenario, the SaaS
. ~vider intends to optimise the number of VMs requested by the applica-
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tion, while the TaaS/PaaS provider chooses the optime  pri e .. maximise
profits. In Figure 27, the above problem is numerically soi. 1 and the maxi-
mum profits for the monopolist as a function of the n'.mber ~f power efficient
(namely type 1) hosts H; is depicted. . is the enc gy pric 2 of the energy
provider. As the number of type 1 hosts increases the -~ _rgy-saving effect
of the scheduling of requests performed by the apr . tion becomes more
significant. The upward slopes for the energy-awa. ¢ Sae 5 providers (the two
solid curves) decrease around H; = 26. This is v. » pont where type 1 hosts
serve exclusively type 1 requests. For grea‘er value; of Hy, type 2 requests
are served by type 1 hosts and hence the <avi. = ffect is less pronounced.
Beyond H; = 55 there is no profit difference as -1l requests are served by type
1 hosts and request scheduling does nov . ave any effect, since VM scheduling
makes sure only the power efficient hosts arc utilised. We consider different
values of 7, (0.05 and 0.01 corresporn linciy, in order to investigate how the
profits of the cloud providers are ~ffecy 1 by the energy price of the energy
provider.

In the perfect competitic ~ <cen. rio, the laaS/PaaS providers have zero
profit margin. Applications how. "er have strictly positive profits and it is
observed that their profits increase by being energy-aware. Again, the SaaS
provider intends to maxi iise . ofits. One can move from the legacy alloca-
tion of type I requests, .. here tl ase are distributed equally among all VMs
(irrespective of the h st the, .re running on), to the allocation produced
by energy-awareness by shif ing small loads of type I requests that reside
on any VMs on #pe » hos.s to VMs on type 1 hosts. Hence, application
level energy-awar . ~ess increases applications’ profits. Figure 28 presents the
profits of energy-awarc ‘solid curve) and "legacy” applications (dashed) in
competitive r arn ts for IaaS/PaaS, as functions of the proportion of high
energy reque. ‘s.

Based n the . forementioned analysis, it is concluded that applications
themselv s w uld want to adopt energy-based technologies because they be-
come more , ofi_able if TaaS/PaaS charge according to energy consumption.

8. R lated Work

Thic section reviews existing work and categorises it into three lines of
r.search’ VM energy modelling, prediction modelling and pricing modelling
in cioud computing.
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Figure 27: IaaS/PaaS provider profits in
the case of monopoly as a function of the
number of power efficient hosts.
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Lague 28: Profits of energy-aware and
"~gacy” applications as functions of the
nroportion of high energy requests.

8.1. VM Energy Models

Unlike PMs, VMs energy ~~msun.»tion cannot be measured directly as
they do not have direct hardware ‘nterfaces to plug in any of the wall Watts
meters. Therefore, their energy information can be indirectly identified via
software tools that mode” the mergy consumed by the PMs in which they
are hosted [34] with the .= of di ‘erent approaches, like resource usage-based
[35], [13], [12, 9] lookur, table-: .sed [36], and performance counters-based [8].

In terms of the T Ms .dle power consumption, most of the related work
does not consider i, or . *trisutes it evenly to the VMs, which would not be
fair when heteror,.neous VMs are running alongside on the same PM. The
only exception is the 1. del presented in [35] which considers attributing the
PMs idle pow .r ¢ nsumption to homogeneous and heterogeneous VMs; yet
when part ol “he #Ms CPU and memory resources are assigned to the VMs,
it only att ibutes »art of the PMs idle power to VMs, which is considered
unfair as tha  given PM is switched on to run and maintain the status of
the VMs; ¢ her vise, that given PM could be switched off to save its idle
powe' consrmption. In terms of the PMs active power consumption, some
of th relate | work models [36, 35, 12] attribute it to homogeneous VMs
onl 1.~ .ner models [8], [9] consider attributing the PMs active power to
I omoge. eous and heterogeneous VMs, but using different approaches. The
n ~del i croduced in [9] is the only model that has a similar approach to
the one introduced in this research when attributing the PMs active power
cc asumption to the VMs; however, their model still lacks fair attribution of
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the PMs idle power consumption to heterogeneous VMs

The energy-aware model presented in this paper is du. rent when com-
pared to existing models found in the literature. It ¢ asiders avtributing the
PMs idle power consumption to heterogeneous and h ymogen ous VMs based
on their size in terms of the number of vCPUs ea~h V. " '.4s, which reflects
the actual PMs CPU resource and power usage. Alsc, .. e PMs active power
consumption is attributed to homogeneous and he.croge 1eous VMs based on
their CPU utilisation and size. Thus, the mode: troduced in this research
is the only one that considers homogeneor = and h« terogeneous VMs when
attributing both the idle and active powe. cons = ption.

8.2. Energy Prediction Models

As stated in [37], predicting the energy -onsumption of cloud applica-
tions and VMs about to be deployec an . 1un would require understanding
the characteristics of the underly ~g plL. -sical resources, like idle power con-
sumption and variable power unde: a.."~rent utilisation of workload, and the
projected virtual resources us =~ MNost of the existing work [20], [38, 39]
introduced different approaches 1. nredict the workload in order to meet the
demand and efficiently provision the resources in cloud environments, yet not
considering the energy ¢ asun,, tion and energy efficiency of the resources.
However, only the work | vesent: d in [40] considers predicting the workload
and translating it int, energ, consumption in a cloud environment. The
work presented in [/)] ic the only work that has a similar approach to the
one introduced in *1is 1. @2 ch in terms of predicting the workload and then
translating it int . ~mergy consumption. Nonetheless, their approach is only
focused at the FM leve! whereas the prediction approach introduced in this
paper focuses at  oth the VM and PM levels.

In terms . f p ediction based on historical data, predicting the resources
usage, ene’ gy con. *mption and estimating total cost of the VMs, some of the
related work "20] r redict the workload only without consider the estimation of
costs or ene. ~v ¢ nsumption of the VMs. The other methods presented in [41,
42] ccasider total cost of the VMs including the cost of energy consumption
basec on (e.s. number of VMs and data size). Nonetheless, their objectives
do ~ot ¢ _uder estimating the total cost or energy consumption.

The pproach of the framework presented in this paper first predicts the
w rkloas. of the VMs and then correlates the predicted VM workload with
the M to estimate the PMs workload and power consumption, from which
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the power consumption for the VMs is predicted, then. cstir a1 the VMs
total cost accordingly.

8.8. Pricing Models

In the pay-as-you-go scheme the customer pa— tfo. *'_c resources made
use of. With this scheme, the customer can chc se *..c amount of a variety
of characteristics that will compose the VMs '1.e ba ic characteristics of
the VMs are the capacity of the CPU, memory, “torage, data transfer and
operating system. Omne other popular sche ne used is the periodic payment
(e.g., monthly, semester, yearly subscrip.'ons, *-.) or pre-payment. The
customers pay or pre-pay the use of specific =sources, having a discount
on the hourly charges. Usually under “hese schemes, if the needs of the
customer change, the resources reserved for ..'m cannot be returned and the
amount is not refunded. Another innc vat ng scheme is on-demand / reserved
instances, where the customers pe - for ¢ ‘mpute capacity by the hour with no
long-term commitments. The notin “ehind this scheme is the reservation
of the resources before their -~ for a specific amount of time. A similar
scheme is spot instances, where 1.~ customer buys the unused capacity and
runs it until the price of the instances bought becomes higher than the actual
bid. The spot price chan es pe iodically based on supply and demand, and
customers whose bids 1n. ~t or  xceed it, gain access to the available spot
instances [43].

Pricing in cloud om utir g has been studied extensively in the past [44,
45, 46] and most # ppro. ~he s consist of a combination of a fixed or variable
price per VM inst . ~ce and an additional usage charge based on the actual use
of computing resources . “ich as CPU cycles, network bandwidth, memory and
storage space Ou - work in [45] does not focus on the economic implications
of the propo. ~d ricing scheme, while the work in [46] proposes a demand-
response 1 echani. ™ which the cloud employs to cope with the variability in
electricit: prices. In our recent work [24], a novel pricing scheme based on
energy con. “my .on of cloud resources is proposed. In [47], the economic
impli- ations of the choice of pricing schemes by an IaaS/PaaS provider are
comp red, ac well as the incentives of SaaS providers to adopt an energy-
aw~e i _cwork.
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9. Conclusion and Future Work

This paper has introduced a cloud system architer..re an’ evaluated an
energy-aware model that enables a fair attributior of a b Ms energy con-
sumption to homogeneous and heterogeneous VMs ba. ~d or their utilisation
and size, which reflect the physical resource usar,ec by ~ach VM. Also, it has
proposed an energy-aware cost prediction fram v .ck tiat can predict the
resource usage, power consumption and estime ~ the *otal cost for the VMs
during the operation of cloud services. A number o. direct experiments were
conducted on a local Cloud Testbed to evai.~te t'.e capability of the pre-
diction models. Overall, the results show . 2t the proposed approach can
fair attribution of a PMs energy cons' .._...o.. w0 the VMs and predict the
resource usage, power consumption and es. mate the total cost for the VMs
with a good prediction accuracy ba. «u < “oud workload patterns. Unlike
other existing works, this approach co. = ders the heterogeneity of VMs with
respect to predicting the resource . oe, >ower consumption and estimating
the total cost.

The application of the propo. "1 wu.k is providing energy-awareness which
can be used and incorporated by ou..er reactive and proactive management
tools to make enhanced ¢ .c. -aware decisions and efficiently manage the
Cloud resources, leadin’ towarc s a reduction of energy consumption, and
therefore lowering the cosy ~f JPEX for Cloud providers and having less
impact on the envirc ime .t.

Additionally, a se. . no el energy-aware pricing schemes is proposed to
enhance JaaS/Pa# 5 proviacrs choosing their optimal pricing strategy, reflect-
ing also our targ :t to. ‘ncentivising the customers to be energy-efficient. The
proposed prici~ . ~chemes differ in terms of aggressiveness with respect to the
charging of e ergs consumption bursts. To this extent, a mathematical model
of applications . nd TaaS/PaaS providers and show that applications which
adapt to :mer sy-based information and the proposed energy-based pricing
schemes - ppr priately scheduling requests to VMs, extract higher profits
comps .d to v ng non-adaptive. Although the model is a gross simplifica-
tion f realiv -, it is valuable in that it clearly shows the potential economic
benefi. » for .pplications to respond to appropriate pricing signals. Thus, it
is not cnly that applications become more power efficient once they utilise
¢ 1 energ /-aware framework but they have an economic incentive to utilise
it. ™ . laaS/PaaS providers are the likely first adopters of energy-aware
la: o.. as it increases their profits even when the application providers are
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not energy-aware. Even if the aforementioned analysis shor s . at if SaaS
providers adopt the energy-aware SaaS layer they will alsc see their profits
increase, this does not mean that they will adopt an e .ergy-aware framework
as they have no means of evaluating the benefit of a ing so.

Future work includes the extension of our appr~ach .~ " integrate it with
performance prediction models to determine the cos*, € different scenarios.
Besides, further investigation will focus on VM pe..orms ace prediction mod-
els, dynamic placement of VMs, and demonstrav. n or the trade-off between
cost, power consumption and performance. Also, the scalability aspects with
different prediction algorithms will be co: ~ider. 7 o further show the capa-
bility of the proposed work. Finally, addition.' cloud applications workload
patterns, e.g. unpredictable, once-in-a-. *etime, and continuously changing,
can be further considered to broaden the sc - pe of using the framework to
predict the workload, power consump, ior aud estimate total cost of the VMs
based on different types of worklr ~d pa terns.
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The paper explores the aspect of sustainable computing over the Jroi lem domains
of cloud computing application deployment and operation costs, « ~a' gy efficiency
and pricing schemes.

Energy efficiency is supported through an energy-aware co -t pr :dic.aon framework
that is capable of predicting the workload, power consumptior, *nd total cost of
Virtual Machines with good prediction accuracy for vario’.s Cloua application
workload patterns

Novel energy-based pricing schemes provide the ne _ess~-v incentives to create an
energy-efficient and economically sustainable ecosy ~t-.n.




