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Abstract—Energy conservation at public/office buildings can be
tricky, due to the absence of direct incentives, e.g., regarding the
electricity bill, and the potentially higher aversion of employees to
comfort loss. Few serious games have been developed for motivating
occupants to save energy based on peer pressure and/or prizes.
However, the design of these games has mostly been based on
a genre-adoption approach, while behavioral traits of employees
were either considered on average only (rather than per individual
player) or not considered at all. In this paper, we analytically study
the design of an effective serious game in a work environment
involving team competition and prizes. We introduce an innovative
model of the energy-consumption decisions of an employee that
includes several factors, namely sensitivity to comfort loss, desire
for conformance to the social norm, desire for teaming and
appreciation of monetary rewards. We formulate the problem of
maximizing the effectiveness of the serious game with respect to
the team size and the amount of rewards. Based on numerical
evaluation with synthetic and real datasets, we show the significant
impact of these game parameters to the effectiveness of the serious
game as an incentive mechanism for energy conservation in this
context.

I. INTRODUCTION

According to the European Environment Agency (2017), a
significant fraction of electricity is consumed by the services
sector (29.8%), of which a key part comprises office buildings.
Although the energy-consumption reduction in buildings is a
complex issue and should also be addressed by means of
energy-efficient refurbishing and retrofitting of the buildings,
the consumption behavior of the people in these buildings is
considered a key factor and it should be properly addressed as
well, in order to accomplish energy-consumption reduction and
smoothing, because “buildings don’t use energy, people do” [1].
Demand-side management (DSM) refers to the adjustment of the
demand side of electricity supply, so that it minimizes supply
(generation) costs. DSM includes energy efficiency and demand-
response (DR) solutions. The latter attempt the modification
of electricity demand as a response to some special signals
to the customers. While price-based DR programs directly
involve economic incentives for user participation through the
electricity prices used for charging, most incentive-based DR
programs (e.g., Critical Peak Rebate, Direct Load Control)
also indirectly involve economic incentives through monetary
rewards, discounts or penalties.

Few attempts have been made for DR in office buildings
mostly based on automated control of HVAC using sensory
data [2], [3]. This is because, more often than not, providing
economic incentives for DSM in office buildings may not be
practical, while various other behavioral traits of consumers may

be equally or more important for their decision-making process
than cost-saving [4]. Such behavioral traits for users at a work
environment include attitude towards energy conservation, prob-
lem awareness, knowledge, habits, desire for conformance to
social norms, needs, inclination towards teamwork, mobilization
by means of rewards, etc. Serious games and gamification are
a means for engaging and motivating people towards specific
goals, i.e., learning, training, persuasion, change behavior, etc.,
as in-game playing strategy. The employment of serious games
for DSM is a recent approach followed by few prior works
[5]–[7] that statically employed different game genres, e.g., life
simulation, sports. In [8], which is co-authored by one of the
present authors, the first attempt to mathematically model the
problem of optimal design of a serious game for individual
players was made. However, to the best of our knowledge, a
team-competition setting with team ranking based on aggregate
scores has never been analyzed in the past.

In this paper, we investigate the potential effectiveness for
energy-consumption reduction of a team-competition game
among employees in an office context. We introduce an inno-
vative model for the energy-consumption decisions of an em-
ployee, which includes four key behavioral traits of employees,
namely their sensitivity to personal-comfort disruption, their
desire for conformance to social norms, their desire for teaming
and their appreciation of monetary rewards. We mathematically
model the user problem regarding her game strategy for energy-
consumption reduction. Moreover, we analytically study the
problem of the game designer regarding team formation and
rewarding scheme, in order to maximize the potential effective-
ness of the game. Based on numerical analysis with synthetic
and real data from three pilot sites of the EU project ChArGED
(http://www.charged-project.eu/), we establish that the team size
and the rewarding scheme should be appropriately chosen for
different communities of office employees, in order to maximize
the net achievable energy savings, i.e., the value of saved energy
minus the cost of incentives.

The remainder of this paper is organized as follows: In
Section II, we define our game model. In Section III, we define
the problem of the individual player of the game for selecting
her performance. In Section IV, we define the problem of the
game designer for optimally selecting the parameters of the
game. In Section V, we numerically evaluate our work for
synthetic and real datasets. In Section VI, we review the related
work and, finally in Section VII, we present some concluding
remarks and directions for future work.



II. THE SERIOUS GAME MODEL

We assume K teams of N employees that compete against
each other with respect to their respective (relative) aggregate
energy consumption reduction in weekly competitions. The
respective performance of teams is announced in a leaderboard
and each team member receives a reward bk that varies accord-
ing to the rank k of its team.

We denote as Gj the set of employees belonging to team j.
Let pi the power consumption of employee i at a time slot.
We define ∆pi = (p0

i − pi)/p
0
i to be the normalized energy

consumption difference of a player i, where p0
i is the nominal

energy consumption and pi is consumption brought about by the
game. We refer to ∆pi as the performance of each employee i
in the game. Similarly, the performance ∆Pj of each team j in
the game is given by:

∆Pj =

∑
i∈Gj p

0
i ∆pi∑

i∈Gj p
0
i

(1)

The game parameters K and~b = (bk) are chosen by the game
designer and are fixed throughout the game.

III. THE PLAYER’S PROBLEM

The energy-consumption behavior of an employee is dictated
by four components corresponding to four different behavioral
traits, namely (i) the inelasticity to any losses in personal
comfort, (ii) the desire for conformance to social norms, (iii)
the desire for teaming, and (iv) the desire for rewards. Below,
we deal separately with each of these components.

A. Discomfort

The energy consumption profile of an employee in an of-
fice environment comprises multiple non-shiftable and shiftable
devices. A non-shiftable device for a particular employee is
one whose power load cannot be reduced or deferred in time
in response to a demand-side management (DSM) mechanism,
e.g., PC, projector, etc. A shiftable device can be classified as
flexible (i.e., power-reducible), such as lighting, HVAC, etc., or
deferrable (i.e., time-shiftable), e.g., printing, coffee machine,
microwave, etc., in response to DSM. We express the player
discontent from an energy-consumption reduction as

di(∆pi) = ai(1−
√

1−∆pi) , (2)

where ai > 0 is a factor of comfort inelasticity of player i. This
function is convex, similarly to the aggregate user dissatisfaction
model in [9] for flexible and deferrable loads. To account for
the non-shiftable loads, we assume a personalized upper bound
Ri < 1 in the normalized energy consumption reduction of
employee i, i.e., ∆pi < Ri.

B. Social recognition

During the game the ranking of the K teams is announced
in a leaderboard according to their relative performance for
energy consumption reduction. We assume that a team member
i enjoys some societal advantage hi when her team wins this
social competition. Note that hi expresses a personal behavioral
aspect. The performance ∆Pj of team j where employee i
belongs to can be written as a function of the performance

∆pi of employee i and the performance of other team members
∆p−i, i.e., ∆Pj(∆pi,∆p−i), which is given by (1). Overall,
the satisfaction of employee i that belongs in team j can be
expressed by:

si(∆pi,∆p−i) = hi · Pr[∆Pj(∆pi,∆p−i) ≥ ∆Pk,∀ k 6= j]
(3)

Observe that ∆Pj(∆pi,∆p−i) increases with ∆pi, which
means that higher individual performance increases the prob-
ability of her team to win the social competition.

Subsequently, we calculate the probability of team j to be
ranked first given the performance of team member i. First,
we remind some material from the theory of order statistics
[10]. Let X1, . . . , XK−1 be K − 1 independent and identically
distributed (i.i.d.) random variables. In our case, the random
variable Xj denotes the energy consumption reduction of team
j. Note that the game designer has to partition users to teams
appropriately, i.e, by sampling from the consumer population,
so that the i.i.d. assumption applies. However, besides making
the analysis more tractable, this will also make the competition
among the teams more intense and thus our serious-game more
effective.

The order statistics X(1), X(2), . . . , X(K−1) are also random
variables, defined by sorting the realizations of X1, . . . , XK−1

in non-decreasing order. Namely, for each realization ω,
we arrange the sample values X1(ω), . . . , XK−1(ω) is non-
decreasing order, X(1)(ω) ≤ X(2)(ω) ≤ . . . ≤ X(K−1)(ω),
where (1), (2), . . . , (K − 1) denote that permutation of indices
1, 2, . . . ,K − 1 for which the random variables X are ordered.
Thus, we have

X(1) = min{X1, . . . , XK−1}
...

X(K−1) = max{X1, . . . , XK−1} .

(4)

The PDF of the k-th order statistic, X(k), k = 1, . . . ,K − 1 is
given by

fX(k)
(x) =

(K − 1)!

(k − 1)!(K − 1− k)!
F k−1(x)(1− F (x))

K−1−k
f(x),

(5)
where F (·), f(·) are the common CDF and PDF respectively of
the variables X1, . . . , XK−1. In our case, in order to derive the
probability for a team to be ranked first among K teams, we
have to characterize the probability distribution of the (K-1)-
th order statistic, X(K−1) of the other K-1 teams; see analysis
below. Indeed, notice that in general, the (K-k)-th order statistic
denotes the (K-k)-th smallest energy consumption reduction of
a team in the rest K-1 teams, or equivalently, the k-th largest
team energy-consumption reduction of the rest K-1 teams.

Given the statistical information f(x), F (x), i.e. PDF and
CDF respectively, about the ensemble of teams of employees
regarding their team performance, a rational software agent
residing at the consumer side (e.g., at a properly designed
mobile application) calculates the probability that team j of
employee i is ranked first, i.e., higher than K-1 others, as a



function of ∆pi, as follows:

Pr[∆Pj(∆pi,∆p−i) ≥ ∆Pk, ∀ k 6= j] =

Pr[∆Pj(∆pi,∆p−i) ≥ X(K−1)] =∫ ∆Pj(∆pi,∆p−i)

0

fX(K−1)
(x)dx , (6)

where

fX(K−1)
(x) =

(K − 1)!

(K − 2)!
FK−2(x)f(x) . (7)

However, the manifestation of the performance
∆Pj(∆pi,∆p−i) of team j, besides the individual performance
∆pi of employee i, depends on the performance of other
members of team j. Given statistical information gjYl

(y), Gj
Yl

(y)

on the individual performance Y j
l of each member l of team j,

one can calculate the expected performance with respect to the
vector ∆p−i by drawing individual performance values from
distribution Gj . Then, equation (6) is rewritten as follows:

Pr[∆Pj(∆pi,∆p−i) ≥ X(K−1)] =∫
Y1

∫
Y2

. . .

∫
YN

K
−1

gjY1,Y2,...,YN
K

−1
(y1, y2, . . . , yN

K−1)·

∫ ∆Pj(∆pi,y1,y2,...,yN
K

−1
)

0

fX(K−1)
(x)dxdy1dy2 . . . dyN

K−1 ,

(8)

where gjY1,Y2,...,YN
K

−1
(·) is the joint performance distribution

of other members of team j and ∆Pj(∆pi, y1, y2, . . . , yN
K−1)

denotes the performance of team j when the individual perfor-
mance of all other players except i is given, obtained by:

∆Pj(∆pi, y1, y2, . . . , yN
K−1) =

p0
i ∆pi +

∑K
N−1
v=1 p0

vyv

p0
i +

∑K
N−1
v=1 p0

v

. (9)

Note that the exact distribution F of the team performance
X can be accurately calculated based on (9). However, the
following simplifications are foreseeable: Denote g(y), G(y) the
statistical information on the individual performance Y of any
employee in the office building. The individual performance of
employees are i.i.d. and since teams are formed by random
sampling, players within a team are i.i.d. as well. Thus, we
can assume that the distribution Gj of the individual perfor-
mance Y j of any employee in team j is essentially equal
to G, i.e., Y j ≈ Y, j = 1, . . . ,K. According to (9), team
performance is a percentage based on weighted averaging of
individual performances, which are also percentages. Hence, the
distributions F , G of the random variables X , Y of team and
individual performances respectively can be taken to be equal.
Based on these assumptions, individual performance variables
Y1, Y2, . . . , YN

K−1 can be considered to be i.i.d. with PDF f(·)
and CDF F (·). Then, the joint performance distribution of other
members of team j can be given by:

gjY1,Y2,...,YN
K

−1
(y1, y2, . . . , yN

K−1) = f(y1)·f(y2)·. . .·f(yN
K−1)

(10)

C. Teaming Advantages

We assume that a member i of a team j enjoys some societal
advantage by the fact that it belongs to a team. Such a behavioral
trait is prevalent in online-gaming behavior [11] and it is related
to locus of control (i.e., personal perception that own actions can
have an impact) [4]. It can be expressed as a concave function
of the size of team j as follows:

ti(|Gj |) = τi min


√
|Gj | − 1

Si
, 1

 , (11)

where Si is a number of team members that is considered as
plentiful for player i and τi is a factor expressing the significance
that player i assigns to teaming up with other players.

D. Rewards

At the end of each round of the social competition, a prize
bk is given to each member of the team that takes position k
in the leaderboard with bk declining with k. Each player i gets
motivated by this reward according to a factor θi ∈ [0, 1] with
θi = 1 denoting full economic rationality. The expected reward
for employee i of team j is given by:

ri(∆pi,∆p−i) = θi

(
Pr[∆Pj(∆pi,∆p−i) ≥ X(K−1)]b1+

K−2∑
k=1

Pr[X(K−k) > ∆Pj(∆pi,∆p−i) ≥ X(K−k−1)]bK−k+

Pr[X(1) > ∆Pj(∆pi,∆p−i)]bK

)
(12)

where X(K−k+1) expresses the (K − k + 1)-th smallest order
statistic for the performance of a team, as defined in Section
III-B. Alternatively, the reward could be given to a team and split
among team members according to their individual performance.

E. Net Benefit

Summing the aforementioned factors, each employee i in
team j has a net benefit as a function of her performance ∆pi
that is given by:

ui(∆pi,∆p−i) =
1

3

(
si(∆pi,∆p−i) + ti(|Gj |)+

ri(∆pi,∆p−i)
)
− di(∆pi) (13)

All utility terms are normalized by the price of an energy unit,
which is considered to be fixed. Note that since we have three
positive utility components, namely satisfaction from compli-
ance to social norms, satisfaction from teaming, satisfaction
from rewards, whose relative significance for employee i is
expressed by the factors hi, τi, θi respectively, we should take
their average to express the user satisfaction. This is required
for the overall user satisfaction to be comparable with the
overall user dissatisfaction due to comfort losses. The employee
i selects her performance ∆pi, so as to maximize her net benefit,
i.e., she solves the following maximization problem:

max
∆pi

ui(∆pi,∆p−i) (14)



IV. THE GAME DESIGNER’S PROBLEM

If every player plays according to (14), so as to maximize
her individual net benefit, then, given a number of teams K
and a rewards vector ~b, all players compete against each other
through their teams for prizes and societal advantages. Accord-
ing to the first fundamental theorem of welfare economics,
any competitive equilibrium to this game leads to a Pareto
efficient allocation of these resources (i.e., prizes and societal
advantages).

The game designer can influence the Pareto-efficient alloca-
tion point by adequately selecting ~b = (bk) and K, so as to
maximize the total energy-consumption savings minus the total
budget B for consumer rewards, henceforth referred to as net
energy savings. More formally, the game designer solves the
following problem:

max
~b,K

∑
i∈N

p0
i ∆pi(~b,K)−B (15)

Note that this problem is feasible when there exist ~b,K, such
that the net energy savings are positive. Moreover, note that
B =

∑K
k=1 bk is normalized by the price of an energy unit.

Two cases may arise for the solution of this problem:
(a) Full information: We assume that all parameters regarding

the user utility model are known to the designer. For each
pair of (~b,K) a Pareto efficient allocation point can be
found by the game designer as a solution to the following
problem:

max
~∆p

∑
i∈N

ui(∆pi,∆p−i) (16)

where ~∆p = (∆pi), ∀ i ∈ N , i.e., an individual perfor-
mance is found for each employee i. The game designer
iterates among different choices of ~b and K, so that the net
energy-consumption savings are maximized. Note that the
problem could also be algebraically solved for an invertible
prior distribution of performance.

(b) Hidden information: No information is known regarding
the user utility function to the game designer. In this
case, the game designer sets the game parameters (~b,K)
and observes distributed game equilibrium. Then, again
iteratively, the game parameters are changed, so as to
improve net energy-consumption savings.

V. NUMERICAL EVALUATION

In this section, we numerically evaluate our model for find-
ing the optimal team-game parameters for synthetic and real
datasets. In all synthetic datasets for employee i, the sensitivity
ai to any decrease in personal comfort is Uniform in [0.2, 0.8],
the social sensitivity hi is Uniform in [0, 1], the desire for
teaming τi is Uniform in [0, 1] and the mobilization θi by
means of rewards is Uniform in [0.4, 1]. In the real dataset,
the parameters ai, hi, θi, τi are derived based on the responses
of 115 employees to an online survey in the 3 pilot sites of the
ChArGED project, specifically two office buildings in Greece
and Spain, and one museum in Luxembourg. The histograms
for the parameters ai, hi, θi, τi are depicted in Fig. 1a. We
assume that the PDF f(·) of the distribution F of the discretized
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Fig. 1. (a) The histograms of the behavioral factors ai, hi, θi, τi of employees
in the real dataset. (b) The prior distribution of individual performance of
employees with µ=0.197 and σ=0.117.
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Fig. 2. The probability of her team to be first for (a) a low-performing employee
and (b) a high-performing employee, as compared to others.

individual performance of employees resembles Normal and it
is depicted in Fig. 1b. In all experiments, we assume that an
individual reward b is given only to each member of the first
team, while all other players get nothing, i.e. ~b = {b, 0, . . . , 0}.
For clarity of results, we assume that the baseline energy
consumption of each employee i is p0

i =1 KWh in all cases,
while the upper bound for ∆pi for each employee i is set to
Ri=1 and teaming value is maximized for Si=5.

A. Teaming Effects

We consider a random set of N=100 employees from the
real dataset and examine the effect of teaming. We assume
two performance types of employees, a low-performance one
with ∆p1=0.01 and a high-performance one with ∆p2=0.7, as
compared to the others based on the performance distribution
F . Then, as depicted in Fig. 2a, the probability of the team
of the low-performing employee to be first deteriorates with
the number of teams, while the opposite stands true for the
high-performing employee (see Fig. 2b). This was expected,
as the more the team members, the better the low-performing
employee is able to hide her low-performance among them. On
the contrary, the high-performing employee is better-off alone
and her probability to be first in the competition is maximized
for 100 teams, i.e., when she plays alone. Therefore, the number
of teams is a sensitive parameter of the game and affects players
differently depending on their own performance.

We also examine the effect of the team size on the utility
function of employees. The individual reward is set to b=6 re-
gardless of the team size. We consider two cases for employees:
one where all perform low with ∆p1=0.01 and one where all
perform high with ∆p2=0.7. The user utilities of 10 (random)
real employees with respect to the team size for these two cases
are depicted in Fig. 3. As shown in Fig. 3, the utility functions of
employees of low and high performances follow their respective
trends of the probability of their team to be first.
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Fig. 3. (a) The utility functions of 10 random real employees that perform low
with the number of teams. (b) The utility functions of 10 random real employees
that perform high with the number of teams.
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Fig. 4. (a) The maximum user utility values of the employees of (a) the synthetic
dataset for K=50 and b=1. (b) The utility-maximizing individual performance
for each employee in the synthetic dataset when K=50 and b=1.
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Fig. 5. a) The maximum user utility values of the employees of (a) the real
dataset for K=50 and b=1. (b) The utility-maximizing individual performance
for each employee in the real dataset when K=50 and b=1.

B. User Utility Maximization

We consider a synthetic dataset of N=100 employees and a
number of teams K=50. We set the individual reward b=1. The
employees choose the optimal energy-consumption reduction
fraction ∆pi from the set {0, 0.2, 0.4, 0.6, 0.8, 1}. The maximum
utility of each employee i with respect to her performance ∆pi
is depicted in Fig. 4a and her corresponding utility-maximizing
performance in Fig. 4b. As evident therein, different employees
maximize their utilities at different energy-consumption per-
formance points for a specific team size. The overall energy-
consumption reduction that is achieved by this game setting
at the social-welfare maximizing point is 38KWh out of the
baseline 100KWh for all employees in total. Similarly, for the
same number of teams (K=50) and for N=100 real employees
-randomly selected-, the maximum utility of each employee and
her utility-maximizing performance are depicted in Fig. 5. The
overall energy-consumption reduction that is achieved in this
case by the game at the social-welfare maximizing point is
5.6KWh out of the baseline 100KWh for all employees in total.
Observe in Figs. 4a and 5a that the utility for some employees
is positive, while for others it is close to 0, meaning that this
game setting overall is beneficial for some and non-beneficial for
others depending on their own utility-function parameters. The
utility functions for 10 random employees from the synthetic
and the real datasets with respect to their performance for teams
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Fig. 6. The utility functions of 10 employees from (a) the synthetic dataset (left)
and (b) the real dataset (right) with respect to their performance for K=50 and
b=1.
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Fig. 7. (a) Net energy savings with respect to individual reward b for optimal
number of teams K. (b) Optimal number of teams K for different individual
rewards b.

of 2 employees are depicted in Fig. 6a and Fig. 6b respectively.

C. Game Optimization

We now optimize the parameters of the game, namely the
team size and the amount of reward for the first team, in order
to maximize the achievable energy savings by the game. We
randomly select N=100 employees from the real dataset. We
iterate for b = {1, 6, 11, . . . , 46} and K = 20, 25, 50, 100. For
each value of b, the optimal team size N/K is selected, i.e., the
one that maximizes the total energy savings of players. At each
game setting, each employee selects her game performance, so
as to maximize her individual utility. The game performance
of employees for a specific (b,K) pair are used by the game
designer to calculate the net achievable energy savings by
this game setting. Fig. 7a shows the net energy-savings for
the different values of individual reward b for the members
of the first team and Fig. 7b the optimal number of teams
for each value of b. Observe that the highest net savings are
achieved for b=11 and K=50, i.e., for teams of 2 players. Also,
notice that when individual rewards are high, it is optimal in
terms of achievable energy savings that players play the game
individually. However, the net energy savings drop with the
amount of individual rewards.

VI. RELATED WORK

There have been some prior efforts to employ serious games
for demand side management [5]–[7] in public/office build-
ings. Competition as a means of incentive has been effective
in incentivizing individuals to reduce energy consumption. A
serious-game point-competition for energy conservation and
participation in training activities among dormitory residents in
a Hawaiian university was introduced in [6] with no monetary
rewards. They found that energy feedback systems should be
actionable (i.e., propose certain actions to achieve the game
objectives), include training and be sticky (i.e., time-persistent),
in order to have any long-term effect into energy consumption



behaviour. Similarly, Johnson et al. [7] reviewed multiple energy
competitions among university students and identified several
pitfalls in their design. Specifically, the use of absolute or
relative energy-consumption reduction for winner determination
was deemed as not adequate when static baseline calculation
methods are employed and may be unfair for already green
consumers. Anticipating these in our approach, dynamic base-
line calculation will be employed along the game and p0

i

can be considered to represent not the total nominal energy
consumption of employee i, but her nominal consumption due to
misbehavior. Overall, none of these competition game-settings
were analytically studied in terms of effectiveness, as opposed to
our work. Also, a virtual pet game for energy use reduction in a
commercial office setting was introduced in [5]; device-specific
energy consumption was reflected in the fitness of virtual pets.

Multiple serious games were also proposed for energy conser-
vation in residential settings [8], [12]–[14]. Geelen et al. [12]
performed a pilot study on motivating occupants of student-
households to save energy by means of team competition with a
prize, similarly to our game setting. They found that this game
setting achieved 24% savings on average, however, not long-
lasting ones. A serious game for sharing a Medium/Low Voltage
transformer among prosumers was organized as a virtual world
with many user roles and actions in [13], albeit without exploit-
ing any means of social pressure. Another game, called Power
House, for improving residential energy behaviour was proposed
in [14]. Incentive mechanisms included score boards with links
to real-world social networks and virtual currency awards. The
first approach to mathematically model and optimally choose the
design parameters of a serious game was made by Papaioannou
et al. [8]. Only social pressure was considered there as a means
of incentive in a simple game, where consumers were competing
to each other for their relative energy-consumption reduction at
a peak-time slot, and then top-K and bottom-M consumers were
announced as winners and losers respectively.

There are also a number of studies on gamification in general
[15], which verify that specific serious-game design elements,
such as leaderboards, points and levels, positively influence
user participation, engagement and behavioural change without
compromising the users intrinsic motivation. Also, Wang et al.
studied efficient team creation for team competition games in
[11] to maximize game enjoyment. They aimed to create teams
of comparative strength, as we also do in our approach based
on sampling. However, in [11], they also consider playing style
of players apart from their individual performance for team
formation. They found that enjoyment is positively correlated to
the team presence of players with global-liberal playing style,
i.e., those that assist others. We leave the consideration of this
aspect for team formation as a future work. Moreover, team
competition was game-theoretically studied in [16], however,
in a very different setting than ours: winner determination
was based on a one-to-one matchmaking among ordered team
players according to their reported strength.

VII. CONCLUSION

In this paper, we analytically studied the potential effective-
ness of a serious game involving team competition and prizes

for energy conservation in public/office buildings. We consid-
ered four behavioral traits that guide the energy-consumption
behavior of employees in our analysis: (i) sensitivity to personal
discomfort, (ii) desire for compliance to the social norm, (iii)
enjoyment from teaming, and (iv) desire for prizes. We ana-
lytically modeled the problem of the player for choosing her
in-game performance, so as to maximize her net benefit and the
problem of the game designer for optimally selecting the number
of teams and the amount of rewards, so as to maximize the
achievable net energy savings of the game. Based on numerical
evaluation with synthetic and real data, we proved that the
number of teams and the amount of rewards play significant role
on the effectiveness of this game setting for energy conservation
and they should be carefully chosen based on our optimization
approach. However, the level of the validity of our model
remains to be assessed by running our serious game in the
pilot sites of ChArGED. As a future work, we will perform
a sensitivity analysis on the impact of the various behavioral
aspects on the model. Also, we intend to investigate appropriate
team formation, apart from team size, optimal reward allocation
and a more detailed user-utility model at the device level.
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