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Abstract—Mobile-Edge Computing (MEC) is about offering
application developers and service providers cloud-computing
capabilities and an IT service environment at the edge of the
mobile network. However, although cloud computing can be used
to meet traditional challenges, like scalability concerns and pro-
vide for fast resource provisioning times, a multifaceted analysis
is required when it comes in multi-operator environments with
time-critical applications and services. In this work, we claim that
the service importance must be at the epicenter when it comes
to the scheduling and placement decision of whether to deploy
the service at the edge network or not. Virtual machine (VM)
scheduling decisions should avoid SLA violations for popular or
time-critical services, and be fair between the service providers.
A Lyapunov optimization framework is derived to solve this
stochastic optimization problem that aims to maximize the
revenue of the physical infrastructure owner in a multi-network
operator-sharing environment with time-critical SLAs. A series
of simulation experiments validate the high effectiveness of the
proposed approach over benchmarking ones.

Keywords-VM scheduling, Mobile Edge Computing, Stochastic
Optimization, Service Differentiation, Mobile Cloud

I. INTRODUCTION

The ever-increasing popularity and requirements of mobile

applications, augment the need for efficient mobile computing

architectures and efficient utilization of the wireless network

physical resources. The core idea in the MEC design paradigm

[1], [2] is to improve the end-user experience by utilizing

cloud computing technologies and virtualized IT-based re-

sources at the edge of the network. These are used in order

to facilitate rapid service and function deployment, and the

delivery of Over-The-Top (OTT) applications closer to the

user. The concept considers multiple Radio Access Network

(RAN) nodes (e.g., eNodeB, Wi-Fi etc.) with aggregated

computing/memory/storage power in local nano-data centers,

hierarchically located above the RAN (see Fig. 1). The idea is

that a request for service or function must be handled at the

edge cloud; the request is forwarded to some external cloud by

the gateway systems only if necessary. Note that the interfaces

of a detailed MEC architecture are not yet standardized [3].

Given the resource constraints in the edge network and

the highly-volatile service demand, providing differentiated

performance Service Level Agreements (SLAs) to various

tenants and service providers that compete for the edge

network resources is not trivial. There is some previous

work on SLA-driven VM placement in the generalized cloud

(like [4], [5], [6]), mostly based on demand forecasting for

resource scheduling. However, in contrast to general cloud

computing environments, in MEC, it is the limitation on the

number of physical server resources that requires for extreme

efficiency and proper modeling. Having this in mind, while

also considering that a) multiple operators and stakeholders

come into play concurrently to massively offer services, and

b) there is lack of distinction between time-critical and non-

time-critical services, the area of SLA-driven VM scheduling

in the MEC context remains highly unexplored.

In this paper, we study a VM scheduling and placement

problem, where the VMs are used to support services deploy-

ment at the edge network. In our approach, it is the SLA

requirements set on a per provider basis, that drives the service

deployment and the relevant VM instrumentation. Intuitively, a

service with strict performance requirements must be preferred

for deployment at the edge network, as compared to a service

with loose performance requirements. In the case of multiple

providers with a mixture of time-critical and non-time-critical

services, a non-trivial scheduling problem arises for the MEC-

IaaS provider, i.e., which service(s) from which provider(s)

and where to be deployed at the edge. In our devised approach,

the goal of the decision process is to maximize the MEC-IaaS

provider revenue, while maximizing QoE for the customers of

the time-critical services.

In more detail, the MEC-IaaS provider orchestrates rapid

installation of services deployed on VMs for various service

providers or mobile operators. A service provider can be any

stakeholder that a client is associated with, in order to receive

services (e.g., its mobile telecom operator). Henceforth, we

will use the term mobile operators interchangeably with the

service providers. A connected customer may request for

services that are deployed in VMs that reside at the edge

network or at some external cloud. In the former case, there is

no need to create egress traffic beyond the edge network for

receiving the services; hence, the delay is minimum and the

QoE can reach to its extreme. Note that, potentially, the service

to be deployed can be a web service or application or even

a Virtual Network Function (VNF) (e.g., S-GW of the EPC

network in LTE). This type of generality gives us the flexibility

to apply the scheduling principles in various RAN/network



resources sharing concepts. A VM of a specific type at the

edge cloud is assumed to be able to handle efficiently a certain

workload for a specific service. Excess workload is routed to

a VM of the service at an external cloud and results to a SLA

violation, which is penalized with a certain fee.

We model the service/VM requests made by the mobile

operators as a queuing system. Our scheduling approach

selects for every mobile operator a number of VMs of specific

types to place at the edge network taking into account a)

the SLAs of the services that need to be scheduled, b) the

physical limitations of the edge-cloud nodes and c) fairness

among service providers. The number of requested VMs per

service provider is dynamically adapted to the workload of

the services of the provider over time. At each slot, if there

are no available resources at the edge cloud, the excess VMs

requested are deployed to some external cloud system.

The main contributions of this paper are as follows:

- We formulate a joint optimization problem where the MEC-

IaaS provider aims to maximize its expected lifetime rev-

enue when deploying VMs that host services and minimize

SLA violations for the deployed services, while being fair

among the service providers.

- The problem formulation takes into account not only the

service requests by the service providers, but also the

expected workload in the short run. The idea is to deploy

VMs that host popular services.

- Due to stochastic nature of the problem, we employ Lya-

punov optimization [7], [8], [9], in order to derive fast

myopic VM placement that is close to optimal in the long

run.

- Because of the power of Lyapunov optimization, we make

no assumptions on the arrival rate or the service lifetime

distributions, which are considered unknown. Thus, our

methodology can be used to derive optimal bounds for

any arbitrary arrival and lifetime distributions, as long as

the relevant random variables that constitute the stochastic

nature of the problem are bounded.

- We evaluate our approach by extensive simulations of the

proposed solution against variations of well-known bench-

mark techniques (i.e., First Fit).

We believe that our work can be used in multiple application

scenarios and various 5G use cases, like the ones identified

by NGMN [2]. Also, note that, although we target the MEC

environment, our scheduling and placement approach is quite

generic and it can be employed in different cloud settings.

The rest of the paper is organized as follows: in Section

II, we present the system model, whereas in Section III, we

formally state the problem under consideration. In IV, we

present the proposed optimization approach for SLA-driven

VM scheduling. In Section V, we evaluate our approach by

means of simulation experiments. In Section VI, we overview

the related work. We conclude our paper in Section VII.

II. SYSTEM MODEL

We assume a system with a set of N = {1, 2, . . . , N} of

servers at the edge network. Let P = {1, 2, . . . , P} denote the
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Fig. 1: The MEC concept in LTE networks and services

offering by multiple different tenants (service providers).

set of Mobile Service Operators (e.g., MSO A, MSO B, etc.).

Every wireless client in the area can be associated with such

a provider, in order to receive services.

Controller operation: Our system operates in time slots.

During each time slot, every provider sends requests to the

cloud infrastructure owner (MEC-IaaS provider) to deploy a

specific service. This service must be deployed over a VM

at some server. The lifetime of deployment is also part of

the request, as opposed to the VM type. Every request for

some service with a certain SLA for performance is actually

mapped to a VM request of a certain type by the controller

(e.g., an advertisement service can be deployed in a “small”

VM, while a time-critical service may need more powerful

VMs). We explain the mapping process in detail in the

following. For ease of notation, we assume a predefined set

of available VM types (i.e., “small”, “medium”, “large”) and

let V denote the set with all the VM types. Also, let R be

the set of capabilities of any physical or virtual machine, i.e.,

R = {cpu,memory, storage, bandwidth}.

The control actions are taken at the beginning of each time-

slot. At each control instant, the controller of the MEC-IaaS

provider is responsible to decide: a) which new services are to

be deployed, b) which VM type the service request is mapped

to and c) in which server to deploy the VM at. If there is no

available capacity, VMs are deployed at some remote cloud

system. In our model, at the beginning of each time slot,

the controller flushes all the enqueued requests for all the

providers queues and no service backlog is transferred to the

next slot. For simplicity and clarity of presentation, we refrain

from considering VM migrations in this work. We plan to

enhance our model and take into the account the possibility

of VM migrations in the future.

The controller operation is based on the incentive to maxi-

mize the revenue of the MEC-IaaS provider by deploying the

most popular (by means of users requests) and performance-

demanding services, while utilizing edge-cloud resources as

much as possible. The deployment of more performance-

demanding services (or applications or even virtual functions)

at the edge servers increases the QoE of end users and the



network utilization efficiency at the same time. This is a

good motivation for the service provider to pay the MEC-

IaaS provider to host its services. We explain this process in

detail below.

Description of the Service Request process: From the

business perspective, every provider requires the satisfaction of

a specific SLA for each service. With our approach even very

strict SLAs can be met by deploying the service at VMs at the

actual edge, following an optimal strategy. Note that each VM

instance that runs a specific service for a provider can serve up

to a maximum number of client requests, while respecting the

service SLA. Client service requests that cannot be handled

by VMs at the edge incur a certain penalty payable to the

service provider (e.g., similar to the penalty fee described in

the Amazon EC2 SLA for service unavailability).

Let Si = (Si,j) denote the set of all the services j the

provider i ∈ P wants to deploy. Let S denote the set of

all services S = ∪Si. Every service can be deployed in

some VMs of type v ∈ V . The service model can be quite

extensive, meaning that the services deployed may be related

to interactive services, batch requests, or even to VNFs. In this

work, we do not get into this level of detail. We only consider

the request pattern associated with each service.

Requests for Specific Service Instances: For every service

s ∈ S , there is a) the lifetime period of deployment and b) an

associated request rate from mobile end users and/or other

applications that are using it. The client request rate of a

service can be either estimated by the IaaS controller based on

prior measurements of client requests for this service deployed

at the edge or some exterior cloud from mobile users and/or

other applications, or set by the Mobile Service Operator

(MSO) based on private estimates (e.g., MSO 1 makes an

initial estimate of 1000k requests per sec for some service

he wants to deploy). From a practical perspective, by using

packet steering techniques or SDN methodologies, we can

obtain per flow/service statistics. In either case, in the next

slot, just before the control decision, the estimate of the client

request rate per service is adjusted according to the actual load

using various moving average techniques, such as Simple or

Exponential Moving Average.

We denote as rsj (t) the aggregated rate for the expected

number of client requests made by all mobile users or appli-

cations/functions associated with service provider j for service

s. Moreover, we denote as r̃sj (t) the actual request rate by all

mobile users or applications associated with service provider

j for service s when s is hosted at the edge network and as

r̂sj (t) when s is hosted in some remote cloud. Then,

rsj (t) = r̃sj (t) + r̂sj (t) . (1)

All these rates are calculated based on prior statistics at the

end of each slot and are used by the IaaS controller for the

control decision in the beginning of the next slot.

Mapping Service Requests to VM Requests: In order to

satisfy the client request rate for some service, a number of

VMs is required. This relation is provided by some function
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Fig. 2: Stressing Apache service at a host machine.

f(·), which is defined as follows:

f : RQ× S × P −→ N
|V| (2)

f(·) gives the vector of the numbers of VMs per VM type

for handling requests rsj (t) ∈ RQ for service s according to

the SLA requirements of customer j. For example, assume

that provider j wants to deploy service s and it is expecting

a request rate of rsj (t) = 10000 requests per slot, with some

specific SLA requirements (e.g., 10ms average respond time).

If function f returns the vector (2, 1, 0), this means that this

SLA can be satisfied with 2 small VMs or with 1 one medium

VM. In this context, we also define as ξv,sj to be the maximum

request rate for service s that can be served by a VM of type

v within the delay bound per request satisfied by the SLA

to customer j for service s. For example, as depicted in Fig.

2, we benchmark an Apache web server deployed on a VM,

where we bring the CPU of the host machine in overload,

using the Linux stress tool. In practice, this CPU overload

of the host machine can be due to multi-VM operations or

other functionality. As we can observe in Fig. 2, the maximum

rate of requests that can satisfied under host CPU overload,

within a 95-percentile delay bound of 73ms per HTTP request,

is ξ=462.578 requests per second. That is, a decrease of

almost 180 requests per sec from the case where the host

is not stressed. For lower delay bounds or VMs with limited

resources, ξ values for this service are expected to be lower.

Employing similar stress tests per service s and per VM type

v, one can find ξv,sj values for the delay bound per service s
specified at the SLA of service provider j.

The problem of finally mapping service requests to VM

requests resembles Knapsack as follows: Each VM of type v
has a rent of wv and serves up to ξv,s client requests per slot.

We need to serve Ws requests for service s. We employ a

greedy approximation algorithm, which is a variation of [10],

as follows: Sort the VM types in decreasing order of requests

per unit of rent, ξv,s/wv . Add the VM types to the sack,

starting with as many copies as possible from the first VM

type, so that adding one more VM of that VM type keeps

the total number of requests satisfied lower than or equal to

Ws. Then, continue adding VMs of the second VM type in

the same manner and so on, until all VM types are examined.

Finally, add one VM of the cheapest type to the sack, if the

total number of satisfied requests is lower than Ws. Note that

this last VM is guaranteed to increase the total number of
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satisfied requests to a value more than Ws. If the lowest total

rent is m, then this greedy algorithm is guaranteed to achieve

at least a value of 2 ·m, while satisfying Ws client requests.

Capacity Constraints: A VM can be scheduled to some

physical machine if its resource specification does not violate

the physical capacity of the server in any of its resource

pools. Let the vector Pi = [pji ], j = 1, .., R denote the

physical capabilities R. Any VM type v ∈ V defines a vector

Mv = [mj
v], j = 1, .., R with the physical capabilities R

required. Moreover, we define nv,s
i,j (t) as the number of VMs

of type v that are hosted in physical machine i at time slot t
for provider j and service s at the edge. Let n(t) = (nv,s

i,j (t))
be a vector with all the allocations of VMs in the edge cloud

at time slot t. This is a state vector for our system.

See Fig. 3, for the outcome of the control scheduling and

placement process. This is a cloud Allocation Matrix with

the information of where to actually deploy and instantiate

services on per provider and service basis.

Justification of the System Model: With the above analysis,

we stress the fact that some services are more important than

others and have different impact on the revenue that the service

provider enjoys. By more important, we mean that more client

requests are heading for these services or the service has time-

critical requirements reflected in higher penalties for SLA

violations. At the end of the time slot, if some service is

not deployed at the edge, the MSO has the ability to just

resend the request at the next time slot. Meanwhile, there is

no service idle-time, since the service would be deployed in

some external cloud.

III. PROBLEM STATEMENT

We define as ω(t) = (A(t),D(t), r(t)) a random event at

time slot t. A random event comprises the service/VMs request

arrivals, the VM departures (deletions) and the client request

rates for the various services. We denote as A(t) = (Av,s
j (t))

the number of VMs of type v for service s from provider j at

slot t. Based on the SLAs and service profiling on the different

VM types, the function f(·) determines the number of VMs

per VM type required for handling client requests for each

service within its SLA requirements. Also, D(t) = (Dv,s
i,j (t))

is the number of VMs of type v for service s of provider j
that terminate from server i at slot t.

At the beginning of each time slot t, the controller takes

as input the instantiation of the random event ω(t) and the

edge cloud system state in terms of VMs deployed for the

various services of the different MSOs, and determines the

new VM deployments at the different nodes of the edge cloud.

Let a(t) denote the four dimensional vector of control actions

at slot t decided by the scheduling policy in effect. av,si,j (t) ∈
{0, 1, . . . , Av,s

j (t)}, i ∈ N , j ∈ P , v ∈ V , s ∈ S represents

the number of VMs of type v for service s of MSO j to be

deployed at time slot t at edge-cloud node i.
The objectives of the IaaS controller for selecting the control

action a(t) are the following:

Objective 1: For each VM of type v for service s that is

created at the edge cloud, there is a rent price wv,s (i.e., an

hourly rent price amortized per time epoch) that is paid to

the edge cloud provider. The edge cloud provider would seek

to allocate VMs to its physical machines, so as maximize its

profit W (t) per time slot t, given by:

W (t) =
∑

i∈N

∑

j∈P

∑

s∈S

∑

v∈V

av,si,j (t)wv,s (3)

Over the time horizon, the cloud provider would seek to

maximize the expected cumulative profit or equivalently the

average expected profit over time, i.e.

max lim
t→∞

1

t

t−1
∑

τ=0

E[W (τ)] , (4)

which can be written as a minimization problem as

min lim
t→∞

−
1

t

t−1
∑

τ=0

E[W (τ)] . (5)

Objective 2: For each request that is not served by a VM

residing at the edge cloud, there is a penalty arising from the

potential SLA violation for this service. We aim to minimize

the overall penalty for the requests not handled at the edge

cloud. We define the penalty function P (t) as:

P (t) =
∑

j∈P

∑

s∈S

[

r
s
j (t)

−

∑

v∈V

(

∑

i∈N

n
v,s
i,j (t) + a

v,s
i,j (t)−D

v,s
i,j (t)

)

· ξ
v,s
j

]

· π
s
j , (6)

where πs
j is the monetary penalty for not serving at the edge

cloud a client request for service s of provider j.

Then, our objective for minimizing the average expected

penalty over time is given by

min lim
t→∞

1

t

t−1
∑

τ=0

E[P (τ)] . (7)

Objective 3: As a third objective, we seek to guarantee at

least a minimum service at the edge cloud for all providers.

This can be achieved by a proportionally-fair VM allocation

among providers according to their relative SLA significance.

To this end, we define a logarithmic utility function u(·) of

the allocated resources x to each provider j as follows:

uj(x) = φj log(x) (8)



φj is the penalty for being unfair to provider j ∈ P . We define

the following function as an unfairness metric:

K(t) = −
∑

j∈P

φj ·

log

(

∑

i∈N

∑

s∈S

∑

v∈V

nv,s
i,j (t) + av,si,j (t)−Dv,s

i,j (t)

)

(9)

Thus, regarding fairness our long run objective is

min lim
t→∞

1

t

t−1
∑

τ=0

E[K(τ)] . (10)

Note that the logarithm in K(t) can be approximated by

a piecewise linear function, so that the objective in (10) is

linear. Henceforth, such an approximation is assumed to be

employed.

Constraints: The control actions a(t) to be selected by the

IaaS controller at time slot t are constrained as follows. The

VMs that will operate over some physical machine i at time

slot t should not violate the physical capabilities pi of the

system for each resource. Let the vector yi(t) represent the

resource residuals at host i at time slot t, as an effect of the

control action a(t) and the random event ω(t) at time slot t
(captured by the function Yi(a(t),ω(t))), given by:

yi(t) = Yi(a(t),ω(t))

=

P
∑

j

V
∑

v

S
∑

s

(nv,s
i,j (t) + av,si (t)−Dv,s

i,j (t))mv

− pi .

nv
i,j(t) is the number of VMs of type v that operate in physical

machine i at any time slot t for provider j. Then, the feasibility

constraints are given by:

yi(t) ≤ 0, ∀i ∈ N . (11)

Another constraint is related with the control actions: the

VMs to be deployed at time slot t should be lower or equal

to those requested, i.e.

∑

i∈N

as,vi,j (t) ≤ As,v
j (t), ∀s ∈ S, v ∈ V, j ∈ P . (12)

Now, the overall optimization problem becomes:

Minimize: lim
t→∞

1

t

t−1
∑

τ=0

(

− E[W (τ)] + E[P (τ)] + E[K(τ)]

)

(13)

s.t. (11), (12)

Therefore, the controller tries to select the VMs to be

deployed for the various service providers over time, so as

to maximize revenue (and edge-cloud utilization), deploy the

most popular services, minimize the SLA violations and be

fair among service providers at the same time.

TABLE I: Summary of Notation

Notation Description

N Set of edge-cloud physical machines.
V Set of available VM types.
R Physical capabilities of any physical server by means

of {cpu,memory, storage, bandwidth}.

Rk A vector Rk = [mj

k
], j = 1, .., R with the physical

capabilities R required per VM type.
Pi The physical capabilities R of any physical server i

by means of R = {cpu,memory, storage, bandwidth}.
Sj The set of VM-services for provider j.
rsj The client request rate for service s that belongs to provider j.

r̃sj The client request rate for service s that belongs to provider j

and it is actually hosted at the edge cloud.

IV. PROPOSED APPROACH:LYAPUNOV

OPTIMIZATION-BASED VM SCHEDULING (LBVS)

The controller at each time slot selects the VMs to be

deployed for the various service requests by the different

MSOs. The edge cloud carries the effect of control decisions

to the future, i.e., it is a dynamic system, while for the state

there are some stability conditions. We exploit, Lyapunov

optimization, and specifically the drift-plus-penalty technique

[8], [9], [11], in order to achieve the long-run objective in

problem (13). With this approach the minimization of the

objective function depends only on the control actions and

the random event (i.e., service arrivals and departures, client

requests) at each slot and not on the whole system state, history

or knowledge of distribution mean values. The alternative

of calculating the optimal control actions over all time slots

using dynamic programming would suffer from the curse of

dimensionality and it would be impractical, as it would require

knowledge of all random events over time in advance.

We assume that this problem is feasible, i.e., a control action

that can satisfy all of the desired constraints exists. The virtual

queues for the constraints are defined as follows:

Qi(t+ 1) = max[Qi(t) + yi(t),0], ∀i ∈ N (14)

The Lyapunov function for the virtual queues is

L(t) =
1

2

∑

i∈N

Q2

i (t) .

Using the drift-plus-penalty approach, we have

∆(t) + V (−W (t) + P (t) +K(t)) ≤ B

+ V (−W (t) + P (t) +K(t)) +
∑

i∈N

Qi(t)yi(t) , (15)

where ∆(t) = L(t + 1) − L(t) and B is a positive constant

used to upper bound
∑N

i=1
y2

i (t). The V parameter can be

chosen adequately large, so as to ensure the time average of the

objective is arbitrarily close to optimal, with a corresponding

side-effect in the average virtual queue size. Thus, we can find

almost optimal VM placement actions by greedily minimizing



at each slot t the following problem:

Minimize :V (−W (t) + P (t) +K(t)) +
∑

i∈N

Qi(t)yi(t)

(16)

s.t. (11), (12)

Due to Jensen inequality, it can be shown that an optimal

solution to (13) can be achieved by solutions of the type a(t) =
a∗, where a∗ is a vector that solves the linear problem (16).

Further, any time-averaged vector lim
t→∞

a(t) corresponding to a

solution of the time-averaged problem (13) must solve the lin-

ear problem (16). Therefore, the original optimization problem

(13) can be solved by taking the time average of the decisions

made when the drift-plus-penalty algorithm (16) is applied.

The linear program (16) admits a worst-case polynomial-time

algorithm with complexity O((|V| · |S| · |N | · |P|)3.5L), where

|V| · |S| · |N | · |P| is the number of problem variables that can

be encoded in L input bits [12]. At each slot, a solver can be

used to solve (16).

V. EVALUATION

We evaluate the proposed scheduling approach by means of

simulation experiments. The goals of the evaluation process

were to verify the theoretical results, while also to demonstrate

how the various edge-cloud and statistical parameters affect

the performance of our approach. In addition, in order to

demonstrate the compensation of optimality, we contrast the

proposed scheduling policy with the well-known First Fit

algorithm [13], i.e., place each VM into the first host where

it fits, which is used as benchmark. First Fit algorithm is sup-

posed to consider VMs according to two different orderings: i)

Round-Robin (FF-RR), and ii) randomly (FF-Random). In FF-

RR, small VMs are considered prior to medium ones, which

are considered prior to large ones in a Round-Robin fashion

among providers. In both cases of edge-cloud parameters and

statistical parameters, a number of variables can be tuned,

which could affect the effectiveness of the proposed scheduling

policy in terms of convergence speed. For example, such edge-

cloud parameters are the number of providers, the number of

services or the number of host machines, and such statistical

parameters, are the service request arrival rate distribution,

the service lifetime distribution, the SLA-violation penalty

and other weight factors. For brevity, we present here only

indicative results out of extensive simulations.

A. Simulation Setup

For the evaluation of the proposed policies, we used a

custom JAVA simulator and the IBM CPLEX optimization

kit, which solves linear program (16) and determines VM

deployments per time slot. For clarity of presentation of

the system dynamics, we present the performance of our

scheduling approach in a simple scenario with 2 providers.

However, note that larger-scale experiments were performed

with similar findings. Each provider sends requests for a single

web service deployment over the edge cloud comprising a

TABLE II: Basic Setup - Simulation Parameters

Resources Host VM (small,mdm,lrg)
CPU 8 (1,2,4)
Memory 100000 (1024,2024,4024)
Storage 100 (10,20,40)
Bandwidth 10 (1,1,1)

Provider Config. Provider 1 Provider 2
Service arrival Poisson, λ=1 Poisson, λ=2
Web Request arrival Poisson, z=100 Poisson, z=100
Service lifetime Exponential, µ=2 Exponential, µ=2
Local Cloud Resp. time Exponential, µ=1 Exponential, µ=1
Rem. Cloud Resp. time Exponential, µ=10 Exponential, µ=10

Client Requests within SLA ξsmall=5000, ξsmall=5000,

ξmdm=10000, ξmdm=10000,

ξlrg=20000 ξlrg=20000
VM Rent (small, mdm, lrg) 0.026, 0.052, 0.104 0.026, 0.052, 0.104
SLA-violation Penalty 1 1
Unfairness Weight 1 1

single physical machine. The same SLA contract is provided to

both providers. This will be the basic setup for our simulation

experiments unless stated otherwise. For this basic setup (see

Table II), the service requests follow a Poisson distribution

for both providers, whereas provider 2 has a higher service

deployment request rate. Furthermore, in order to estimate the

expected client request load per service in runtime, a simple

moving average with window size 3 is employed based on

prior load measurements. Each simulation run lasts 100 time

slots and we average our results over 100 runs.

B. Simulation Results

In Fig. 4(a), we present a performance comparison of the

three scheduling policies considered in terms of cumulative

net benefit in the basic scenario. Evidently, even in this simple

case where a single service is requested by each provider, the

LBVS approach outperforms the other two policies, since it is

more capable to adapt on service-deployment load differences

(provider 2 has increased service deployment rate). Therefore,

LBVS results to better utilization of the physical resources, as

compared to both variants of the First Fit scheduling policy.

This result is also explained by Fig. 4(b) presenting the

number of deployed VMs per scheduling policy. Although

the total number of VM deployments can reach a saturation

point due to capacity constraints, LBVS approaches closer to

the theoretically optimal bound of VM deployments without

any knowledge of the statistical properties of the random

variables (i.e., service-deployment requests, service lifetime,

load of client requests) of the problem. Moreover, note that

the LBVS approach is fairer for the providers, as compared to

the benchmarking scheduling policies. The better utilization of

the Edge-Cloud by the LBVS scheduling policy as compared

to the benchmarking ones is also reflected to the response

time of client requests in Fig. 4(c). As depicted therein, LBVS

achieves lower response time than rival scheduling policies.

Then, we investigate the effects of increasing the service

load (and consequently the VM load), while keeping fixed

the client-request load for the service. As shown in Fig. 4(d),

keeping the VM-deployment rate of provider 1 fixed (λ1=1

VM request/slot) and increasing the VM-deployment rate of
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Fig. 4: Evaluation results

provider 2, a saturation point is reached at point λ1 = λ2 = 1,

after which the net benefit of the Edge-IaaS cannot be in-

creased. This saturation point means that resource capacity

limits of the Edge-Could have been reached. Note that, in

this case, after the capacity limit of the Edge-Cloud has been

reached, the net benefit of the Edge-IaaS that equals (rent from

VM deployments)-(penalty for SLA violation)-(penalty for

being unfair) (i.e., eq.(3)-eq.(6)-eq.(9)) remains constant. This

is because, no additional rents can be obtained, while penalty

factors remain unaltered, since web-service client requests

remain fixed. This is not the case when the client-request

load for the web service increases, as depicted in Fig. 4(e).

Specifically, we examine the case where the VM/service load

is fixed, while we increase the web load for both providers. As

depicted in Fig. 4(e), after the total number of client requests

that can be served within the SLA by the VMs deployed at the

edge cloud is exceeded, the SLA-violation penalty increases,

while the rent from deployed VMs and the unfairness penalty

remain stable. The concluding remark for the cases presented

in Figs.4(d) and 4(e) is that a very careful SLA definition

is necessary when strict performance guarantees are to be

provided to services. As experimentally shown, even with a

close-to optimal scheduling policy, such as LBVS, penalties

arising from SLA violations may be critical and may even

nullify the profit from deploying VMs in the edge cloud.

Finally, in Fig. 4(f), we present the total cumulative net

benefit for both providers over time as the number of nodes

of the edge cloud increases. As expected, when the edge cloud

has abundance of resources, every scheduling policy achieves

a high net benefit for the Edge-IaaS, as all service/VM

deployment requests are satisfied in this case. However, the

more limited the edge-cloud resources, the higher the perfor-

mance gap achieved by the LBVS scheduling policy over the

benchmark ones.

VI. RELATED WORK

There has been much prior work related to VM scheduling.

Here, we overview some important ones that are more relevant

to our approach and closer to the service-based VM allocation

notion that we consider. Lyapunov optimization technique is

described in numerous works like [7], [8], [9] and is being used

for minimization of energy consumption in the data center [7]

or power control in wireless networks [8], [9].

An approach with similar objectives to ours was proposed in

[4]. The authors propose the “CloudScale” mechanism, which,

residing at a physical node, performs VM resource consump-

tion monitoring and prediction, in order to adjust resource allo-

cation to VMs for preventing SLO violations. It employs FFT

for discovering repeating patterns and predicting demand, and

it employs proactive resource padding for correcting resource-

allocation under-estimation errors based on their weighted

moving average. If resource demand under-estimation occurs

for a VM, it re-actively adjusts the VM resources based

on a scaling factor per time slot. When the total forecasted

resource demand for VMs exceed the capacity of the host,

CloudScale scales down resource allocations to local VMs

or migrates VMs. However, since CloudScale mechanisms

at different hosts run independently, SLO violations can also

occur due to collisions during VM migrations. This situation



is not addressed in [4]. In [14], the past demand behavior of a

VM at a host is used for future placement. The VMs are placed

so as to minimize future unsatisfied load for the various VMs

based on observations on the previous TM slots.

In [15], an HPC-aware VM scheduler is proposed. The

approach employs multi-dimensional bin packing and places

VMs to homogeneous hardware resources in a topology-aware

manner, so as HPC applications with tight coupling to have

low communication latency. Also, in [15], the authors calculate

the VM cross-interference by application characterization via

cache intensiveness and communication needs. In [5], the

authors schedule VMs in the cloud using multidimensional bin

packing with stochastic and deterministic resource demands.

The approach aims to maximize the minimum utilization

of all servers and satisfy SLAs with stochastic guarantees.

The demand for a stochastic resource (e.g., network I/O) is

calculated based on its distribution and a probability threshold

that the capacity of the server for the stochastic resource is

violated. Multi-dimensional bin packing is solved by means

of First Fit Decreasing (FFD) and Dominant Resource First

(DRF) algorithms. In [16], the authors try to find fast solutions

to the NP-hard bin packing problem VM placement based on

GPU-based acceleration. However, their approach performs

static VM resource allocation and placement to servers and

it does not account for VM resource demand fluctuations. In

[17], physical machines are grouped into cohorts based on

migration capabilities, namely from live migration, migration

through suspend/resume, no migration at all. Then, scores are

assigned to cohorts according to their resource availability

and their capacity constraints and best-ranked cohorts are em-

ployed for VM placement. In [18], the VM physical machine

cost (PM-cost) and the inter-VM communication cost (N-

cost) are jointly considered, so as to minimize the overall

scheduling cost. Three models of the N-cost are considered

based on the number of non-collocated VMs for the same

tenant and the VM sizes. For different requests for VMs

from the various tenants, their algorithm aims to minimize

N-cost, thus requests that ask for more VMs are placed first.

For overall cost minimization, they propose an approximation

algorithm based on binary search for the number of PMs that

achieve a better trade-off between N-cost and PM-cost. In

[6], VMs are supposed to be allocated for two kinds of jobs

with different SLA requirements, namely (a) the batch non-

interactive computationally-intensive (HPC) jobs that have to

be completed within a deadline and (b) the transactional (web)

jobs that have to execute with a certain response time. In

the initial allocation transactional applications are allocated

resources equal to their peak demand. For non-interactive jobs,

the scheduler tries to allocate slack of resources remaining at

a host that is running a transactional application. Resources

allocated to VMs are adjusted according to forecasted demand

based on Artificial Neural Network (ANN).

VII. CONCLUSIONS

In this paper, we investigated the problem of service/VM

scheduling in environments with limited physical resources,

like the edge cloud, where multiple service providers and

service operators need to deploy time-critical services over

a shared infrastructure. We proposed an SLA-driven VM

scheduling approach that maximizes the revenue of the Edge-

IaaS and minimizes SLA violations, while being fair to the

various service providers. The problem was solved by a

Lyapunov optimization framework and the performance our

proposed scheduling approach was experimentally validated

by means of simulation experiments. As a future work, we

plan to enhance our model to consider VM migrations and

more advanced load-forecasting methods. We also intend to

implement our LBVS policy in a real testbed and evaluate it

in RAN-sharing concepts.
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