

20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks September 22, 2022

Economics of Multi-Operator Network Slicing

George Darzanos, Iordanis Koutsopoulos, Katia Papakonstantinopoulou, George D. Stamoulis

Department of Informatics, Athens University of Economics and Business (AUEB)

Athens, Greece

Context

A 5G vertical application is

- provided by an Application Provider
- over a network slice offered by one or more MNOs
- and consumed by the Users.

Network Slice: A sequence of interconnected *Virtual Network Functions (VNFs)* with strict QoS requirements.

✓ enabled by Virtual Machines (VMs) and Virtual Tunnels (VTs).

Use case: health sector

- User: A hospital whose doctors wish to perform surgeries remotely.
- **Application Provider:** Provides such an **e-Health application.**
- **MNOs:** Provide an end-to-end **network slice** from source (surgeon) to destination (hospital).
 - certain **VNFs** must be deployed in the source and destination regions

Motivation and Challenges

Motivation. The involvement of **multiple MNOs** is *necessary* for certain applications

User Equipment (UE) in remote geographic regions

Challenges

- Competition among MNOs
- Lack of information (e.g., on topology, route availability etc.)

Our Contribution

We introduce **policies** for the effective **multi-MNO network slice provisioning** under different:

- Ecosystem structures Centralized vs Peer-to-Peer
- Degrees of Information availability Information Sharing Mechanism
- Level of trust and MNOs' collaboration Cooperative vs Coopetitive

System Model

MNOs' Topology

 \mathcal{I} : set of MNOs

E: set of physical links

 \mathcal{L} : set of geographic locations

Each MNO (node) $i \in \mathcal{I}$ C_i : CPU cores $L_i \in \mathcal{L}$: location of MNO's i presence

Each physical link (edge) $e_{ij} \in E$ B_{ij} : Bandwidth (bits) D_{ij} : Latency (secs)

Network Slice as a Service Model

Network Slice

- Service-wise → a chain of interconnected Virtual Network Functions (VNFs) with strict QoS requirements.
- Resource-wise → a set of virtualized network, computational and storage resources.

Application requirements \rightarrow Network slice service requirements \rightarrow Virtualized resources

Service graph (sequence of interconnected VNFs)

Resource provisioning

- ✓ Cloud resources as Virtual Machines (VMs)
 - $c_v \rightarrow$ CPU cores allocated to VM v
- ✓ Network resources as Virtual Tunnels (VT)
 - $b_{\tau} \rightarrow$ guaranteed bandwidth of VT τ
 - $d_{\tau} \rightarrow$ guaranteed latency of VT τ

Network Slice Request

Network slice request $r \rightarrow$ sets values on the parameters of a *service template*

- Network slice type (e.g., uRLLC, eMBB, etc.) type $t \in T$ determines:
 - $\circ~$ Set and sequence of VNFs to be deployed, \mathcal{F}_t
 - Data packet size K_t
- Quality class (e.g., standard, premium) class $q \in Q$ determines:
 - Target throughput: B(t,q)
 - Target latency: D(t,q)
- Region of source and destination
- VM placement restrictions
- Traffic volume
- Price

Multi-MNO Network Slicing Example

Assuming that there is a **request** *r* for a network slice

- with certain **QoS requirements** 0
- with **location 1** as source and **location 4** as destination

Decisions to be made:

- **Dimensioning process** (agnostic to the topology)
 - **Resources** that should be allocated in each VM v (i.e., c_v) and VT τ (i.e., b_{τ}) Ο
 - Output \rightarrow 0

 C_3 C_4 C_2

 b_{τ}

Embedding process – (considering the topology) 2.

 C_1

Decision Variables

Placement of **VMs** and **VT** over the topology - set of paths \mathcal{P} 0

 $(x_{v,i}) \in \{0,1\} \rightarrow$ determines if VM v (with capacity c_v) is placed in MNO i

 $y_{\tau,\pi} \in \{0,1\} \rightarrow \text{determines if VT } \tau$ (with bandwidth b_{τ}) is placed over path $\pi \in \mathcal{P}$

0

Network Slice Dimensioning

- Dimensioning process for network slice request r based on the template inputs.
 - The number of VMs to be deployed is determined by the service type t_r .

- Computational resources to be allocated to all VMs of r, $c_r = \{c_v\}_{v \in V_r}$
 - \checkmark i.e., the number of **CPU cores** for achieving throughput $B(t_r, q_r)$ in each VM v

$$\mu_{v}(c_{v},f) = B(t_{r},q_{r})$$

Embedding Process

Approaches

Centralized

- A Broker determines the embedding of all network slice requests *R*
 - The Broker has full information
 - Is the contact point for **Application Providers**

Peer-to-peer

- Each MNO determines the embedding of requests from his own customers R_i ⊆ R
 - Distributed information sharing mechanism
 - ✓ Each MNO may have incomplete information
 - ✓ Tunable level of information availability

Centralized Approach (I)

Cooperative Policy: Broker solves a **global total Profit maximization** problem \rightarrow Mixed Integer Program

APs' paymentsCost of resources $\max_{\mathbf{X}, \mathbf{Y}}$ $\sum_{r \in \mathcal{R}} \left[\sum_{\pi \in \mathcal{P}} y_{\tau_r, \pi} \ \hat{p}_r - \sum_{i \in \mathcal{I}} \sum_{\nu \in \mathcal{V}_r} x_{\nu, i} \kappa_i(c_\nu) - \sum_{\pi \in \mathcal{P}} y_{\tau_r, \pi} \sum_{e_{ij} \in \pi} \kappa_{ij}(b_{\tau_r}) \right]$ Decision variables $x_{\nu, i} \in \{0, 1\}$ \rightarrow $y_{\tau_r, \pi} \in \{0, 1\}$ \rightarrow VMs placement $y_{\tau_r, \pi} \in \{0, 1\}$ \rightarrow VTs placement

Revenue sharing (per request) $\rightarrow \hat{p}_{i,r}(\mathbf{X}^*, \mathbf{Y}^*) = K_{i,r}(\mathbf{X}^*, \mathbf{Y}^*) + \frac{K_{i,r}(\mathbf{X}^*, \mathbf{Y}^*)}{\sum K_{i,r}(\mathbf{X}^*, \mathbf{Y}^*)} S_r(\mathbf{X}^*, \mathbf{Y}^*)$

Constraints

- Infrastructure capacity
- VMs and VTs unique placement
- VM placement location restrictions
- VMs and VTs alignment
- End-to-end latency
- Prices that the Application Providers are willing to pay

Profit from *r*

Centralized Approach (II)

Coopetitive Policy: Broker solves a **local Profit maximization** per **MNO** – for $\mathcal{R}_i \subseteq \mathcal{R}$ and $\mathcal{P}_i \subseteq \mathcal{P}$

- Local problems are solved sequentially in a Round-Robin approach
- MNOs publish prices instead of costs
- <u>Assumption</u>: All MNOs follow a common pricing scheme -- Infrastructure utilization-driven pricing

$$p_{i}(c_{\nu}) = c_{\nu} \ p_{i,co} \left[1 + \frac{\log(C_{i} - \tilde{C}_{i} + c_{\nu})}{\log(C_{i})} \right] \longrightarrow CPUs$$

$$p_{ji}(b_{\tau}) = b_{\tau} \ p_{ji,bw} \left[1 + \frac{\log(B_{ji} - \tilde{B}_{ji} + b_{\tau_{r}})}{\log(B_{ji})} \right] \longrightarrow Bandwidth$$

Peer-to-peer Approach

Coopetitive Policy: Each **MNO** *i* solves a **Local Profit maximization** problem for the requests of his own customers, $\mathcal{R}_i \subseteq \mathcal{R}$.

- Difference with Centralized Coopetitive \rightarrow Lack of full information with respect to paths
- Information sharing mechanism (inspired by Border Gateway Protocol BGP)
 - Each MNO maintains a **table of preferable paths** *e.g., cheapest and feasible paths*

 $\checkmark \alpha$ paths for each combination of (destination location, slice type, quality class)

- Each **path** is characterized by **attributes** that capture
 - Estimated end-to-end latency
 - Estimate throughput (bottleneck)
 - Average resource unit price (computational, network)

Main MNO processes

- Path augmentation
- Update rule for preferable paths
- Path forwarding

Peer-to-peer Approach (II)

Information sharing mechanism - Processes

- Path Augmentation process. Assuming that MNO *i* received a path π' from "neighbor" MNO *j*, he generates the path $\pi = \pi' \cup \{e_{ji}, e_{ii}\}$
 - Estimated end-to-end latency: Additive to the one receive by *j*
 - Estimated throughput: Re-evaluates the minimum throughput (bottleneck) across the path
 - <u>Average unit prices</u> of computational and network resources across the path
- Update rule for preferable path → Cheapest and feasible path
 - \circ <u>Feasible path</u> \rightarrow A path that satisfies the throughput and latency target values
 - <u>Cheapest path</u> \rightarrow The path with the **minimum estimated price**
- Path forwarding → After a path update, an MNO pushes the new preferable path to its neighbors.

Numerical Results

- Centralized. For utilization < ~ 0.65, the difference between *Cooperative* and *Coopetitive* is small (up to 5%).
 increases significantly for utilization > ~ 0.8 reaches 15% at utilization 1.
 Increases when the # MNOs per geographic location is greater than 1
 - Peer-to-Peer. The performance of Peer-to-Peer Coopetitive improves with the size of the "table of preferable paths"
 - close to Centralized Cooperative (upper bound) for information availability > ~45 %.
 - as the **# of MNOs per region** decreases, a **higher** value of α is needed for achieving an *adequate performance*.

Individual Profits

Cooperative - Impact of untruthfulness.

- More than 1 MNOs in each region
 - an untruthful MNO will always have **profit loss.**
- Only 1 MNO in each region AND high utilization
 - an untruthful MNO can generate higher profit
 - MNOs do not have knowledge about others' utilization

The untruthful behavior is avoided

Coopetitive - Impact of strategic pricing.

Similar observations to the cooperative mode.

×

Concluding Remarks and Future Directions

- The profit of MNOs is maximized when they comply with the policies and rules under all proposed approaches and modes.
- The MNOs' profit under the peer-to-peer coopetitive mode is comparable to those in the centralized coopetitive one, when applied in the appropriate network conditions.
- The **untruthful** or **strategic** behavior of MNOs is discouraged/avoided.

Future Work

- Extend the models to capture the provisioning of a *single network slice* over **multiple physical paths**.
- Extend the *information sharing mechanism* to operate under **inaccurate information**.
- Analyze the impact of *strategic* behavior of MNOs when **forwarding paths.**

20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks September 22, 2022

Thank you for your attention!

Backup Slides

QoS Models

Throughput (packets/sec)

- VT τ : Depends on the allocated **bandwidth** b_{τ} and the **data packet** size $K_t \rightarrow$ b_{τ}/K_t
- **VM** v: Depends on the VM service rate $\rightarrow \mu_v(c_v, f) = \sigma_f c_v$

 $\circ \sigma_f$: packets/sec that VNF f can process over a unit of computational capacity

Latency (secs)

- VT τ : If deployed over physical path π , the **aggregate delay** along the path $d_{\tau}(\pi) = \sum_{e_{ii}} D_{ij}$
- VM v : Each VM is modeled as an M/M/1 queueing system with latency

$$d_{\nu}(c_{\nu},f) = \frac{1}{\mu_{\nu}(c_{\nu},f) - \lambda_{r}}$$