

Coordination Models for 5G Multi-Provider Service Orchestration: Specification and Assessment

George Darzanos, Manos Dramitinos, George D. Stamoulis Athens University of Economics and Business (AUEB)

Network Economic and Services Laboratory (http://nes.aueb.gr)

September 19-21, 2017 Biarritz Casino, France

Outline

- Introduction
- Motivation
- 5G Exchange Orchestration Framework

Coordination Models

- Fully Centralized
- Distributed
- Hybrid/Per-Provider Centralized

Scalability Assessment

- Methodology
- Sensitivity Analysis
- Conclusions and Future Work

Introduction

• 5G is an all-IP **fully softwarized network architecture** from core to the edge

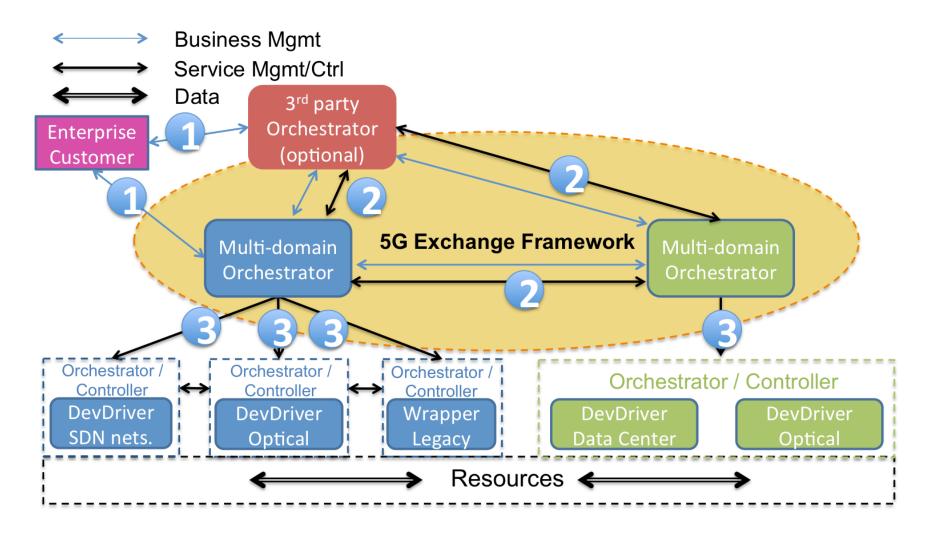
- Exploits the emerging virtualization technologies in all compute, storage and network domains.

 NFV, SDN, Cloud computing, ...
- Softwarization allows the fast-agile trade, deployment, orchestration and management of 5G multi-provider services.
 - Support verticals of unprecedented end-user QoS requirements over the domains of Infotainment, e-Health, Energy, Auto-motive, etc.
- The 5G verticals/customer facing services rely on wholesale infrastructure services
 - Assured Service Quality (ASQ) Connectivity
 - Network Function Virtualization Infrastructure as a Service (NFVIaaS)
 - Slice as a Service (SlaaS)

Motivation

The value chain of 5G inherently involves multiple stakeholders of todays Internet.

- Network Service Providers (NSPs)
- Infrastructure Service Providers (IfSPs)
- Over-the-top Providers


0

- Multi-actor service chain complicates the task of end-to-end service composition and inter-provider coordination.
- Need for business and service coordination models
 - Adoption of sophisticated **service Orchestrators** is vital.
 - ✓ The exchange of information between Orchestrators has great impact on the efficiency of the 5G service composition.

5G Exchange Orchestration Framework

Coordination Models

Coordination Model Characteristics

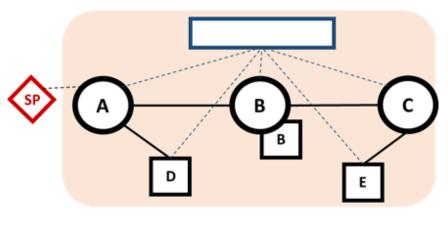
Distributed vs Centralized

 Distributed coordination through bilateral communications, or centralized through a central Orchestrator for information/service aggregation.

Fully Centralized vs per-Provider Centralized

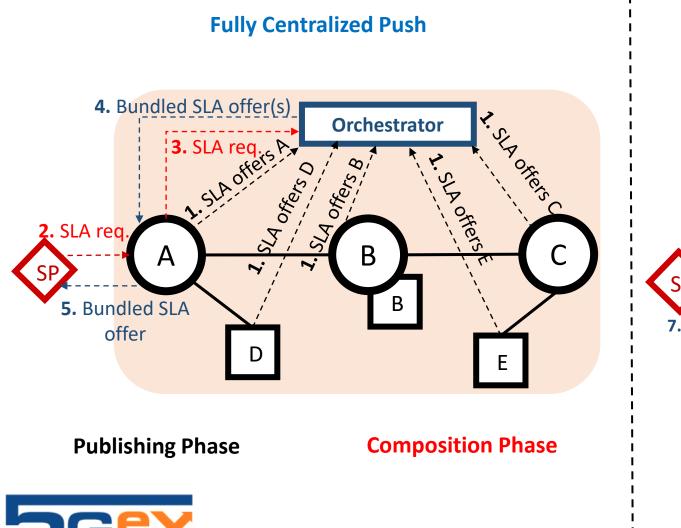
• In the per-Provider centralized model, **multiple central Orchestrators** coexist, each serving a different cluster of providers.

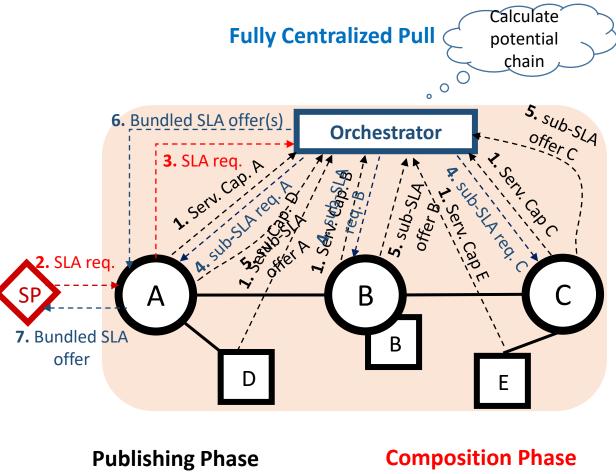
Coordination model phases


- **Publishing phase** specifies the extent of the information exchanged regarding the service offerings.
- In the **service composition** the providers use the information gathered during in their publishing phase to compose services.

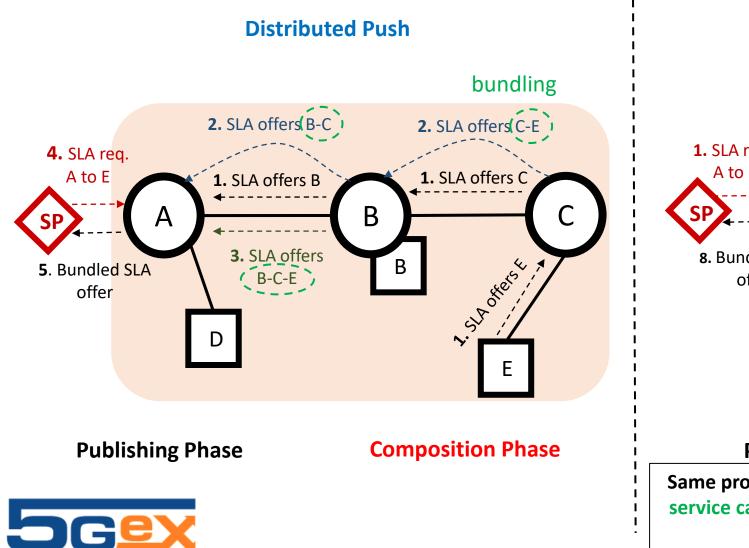
Push vs Pull

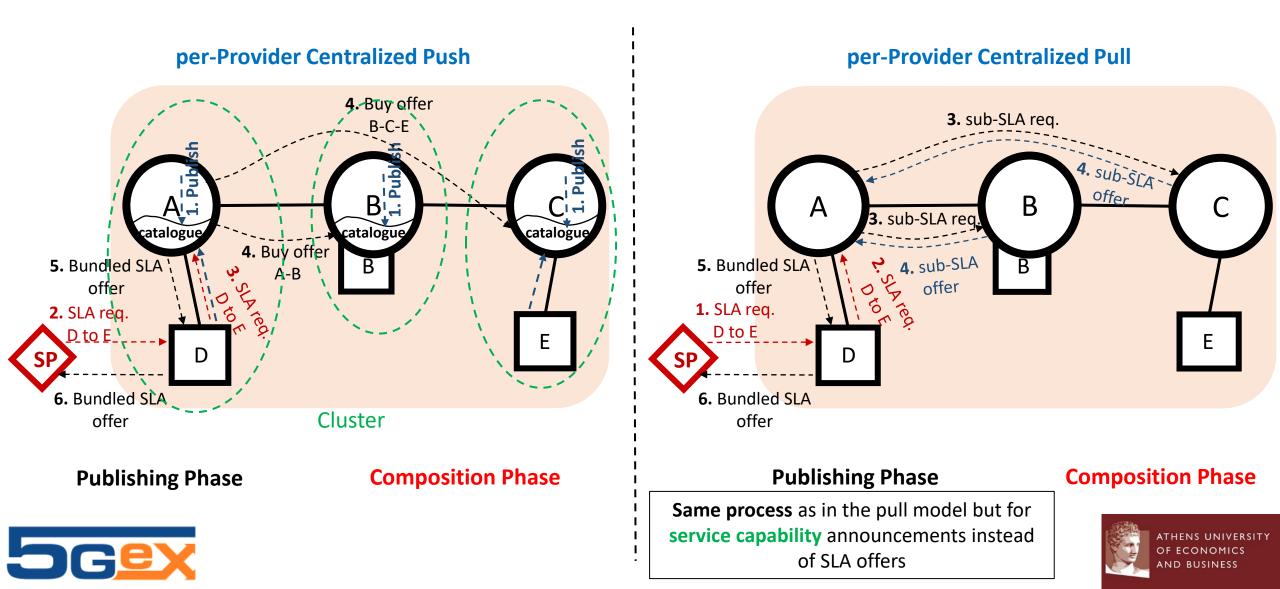
- Push: the providers *publish* SLA offers.
- Pull: the providers *publish* service capabilities


5G Ecosystem



NSP


Fully Centralized Coordination Models



Distributed Coordination Models

Distributed Pull 3. sub-SLA req. 1. SLA req. 2. sub-SLA req. C to E A to E B to E В 7. sub-SLA offer 6. sub-SLA offer 5. 50 55 8. Bundled SLA B-C-E offer , e^{O:} D Ε **Publishing Phase Composition Phase** Same process as in the push model but for service capability announcements instead THENS UNIVERSITY OF ECONOMICS of SLA offers AND BUSINESS

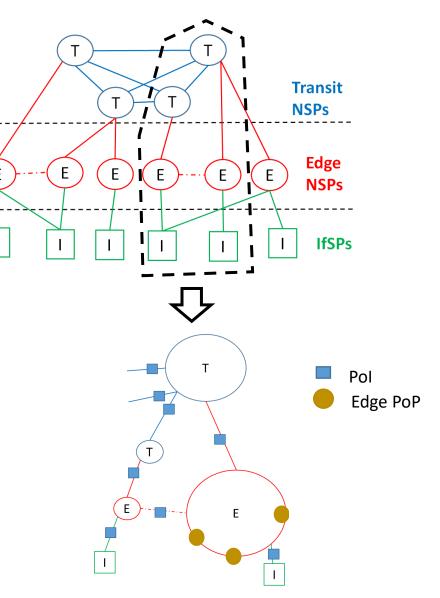
Per-Provider Centralized Models

Assessment Methodology

Service domains

- Transit NSPs: offer services only in N domain
- Edge NSPs: offer services in all N, C, S domains
- IfSP: offer services in C and S domains

Service characteristics


- o Multiple service types per service domain
 - ✓ **Multiple** *SLA* offers per service type (1 per-QoS level)
 - ✓ A *single* service capability announcement per PoI-to-PoI/PoP pair.

Service requests arrive only to Edge NSPs and IfSPs.

 Generation of random requests w.r.t source, destination, service domain, QoS level, etc.

Intense bundling (for Distributed models)

• There are bundled SLA offer or service capabilities to reach any destination within the orchestration framework. (100% availability)

Assessment Methodology (II)

Baseline simulation setup

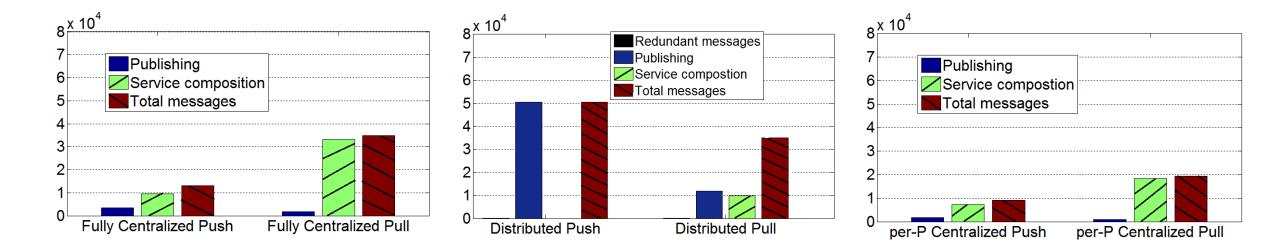
- T-NSP=5, E-NSP=20, IfSP=40
- o 1 Pol per neighbor, 5 PoPs per E-NSP
- o 2 SLA offers (and levels of QoS) per service type, 1 service capability per Pol pair,
- 30 service requests per E-NSP and IfSP.
- Intense bundling: Providers can reach any destination within the 5G orchestration framework.

Sensitivity analysis parameters

- # of T-NSP, E-NSP and IfSP
- # of QoS levels
- # of PoPs per E-NSP
- # of request per E-NSP and IfSP.
- Bundling intensity

Metrics

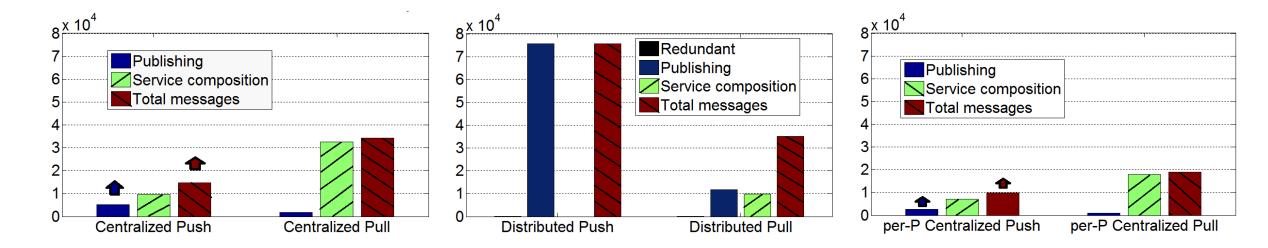
- Message overhead (scalability)
- SLA offers / service capabilities availability (service composition efficiency)



Sensitivity Analysis Results

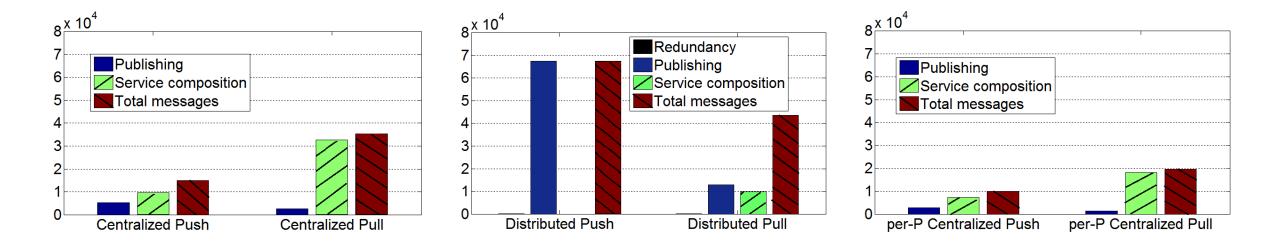
Message overhead for all models under baseline setup

- Highest in the Distributed models / lowest in the per-Provider Centralized ones.
- Pull models generate fewer messages than push during the *publishing phase*
 - ✓ service capabilities are more compacted to SLA offers.
- Push models require the exchange of fewer messages for the *composition* of each service.



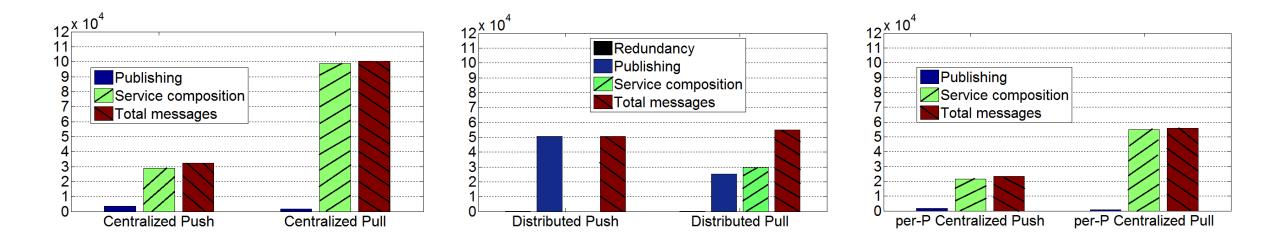
Sensitivity Analysis Results (II)

- Impact of the number of available QoS levels (2 vs 3 QoS levels)
 - **Pull models** are not affected since 1 service capability announcement that covers all QoS levels will be pushed.
 - Push models are affected since a different SLA offer will be pushed for each QoS level.
 - ✓ **Distributed push** is the most *"sensitive*" due to the intense bundling.
 - ✓ The Fully and per-Provider Centralized push models are also affected, but they are less sensitive.



Sensitivity Analysis Results (III)

- Impact of the number of Edge PoPs (5 vs 10 Edge PoPs)
 - Distributed models are affected more than the Centralized ones where the impact is minor.
 - ✓ The *increased number of destinations* within the orchestration framework greatly increase the *impact of bundling*.
 - The number of Edge PoPs affects the message overhead of **push and pull** models in the **same extent**.



Sensitivity Analysis Results (IV)

Impact of the number of service requests (30 vs 90 requests per E-NSP/IfSP)

• The number of requests affects the service composition phase of each model

- ✓ The Centralized Pull affected the most since the Orchestrator must exchange increased number of messages with E-NSPs and IfSPs being at the edge of the network.
- ✓ The per-Provider Centralized pull is affected less, since the multiple Orchestrators are closer to the edge providers of their cluster.

Sensitivity Analysis Results (V)

Impact of the number of T-NSPs, E-NSPs and IfSPs

- An increase on the **number of IfSPs** significantly increase the message exchange of all models
 - **4 85%** increase in Fully Centralized, **180%** in Distributed, **83%** in per-Provider Centralized models.
- An increase on the **number of E-NSPs** the message overhead is **increased** by
 - ✓ 27% in Fully Centralized, 75% in Distributed and 16% in per-Provider Centralized models.
- **By doubling** the total number of providers, the message overhead is **doubled** in Fully and per-Provider Centralized models, but the increase is **exponential** in the Distributed ones.

	Transit NSPs	Edge NSPs	IfSPs	Total Number of messages					
	-	-	-	C-Push	C-Pull	D-Push	D-Pull	P-Push	P-Pull
I	5	20	40	13022	34813	50476	35016	9026	19288
	10	20	40	13286	34781	54720	37026	9226	19354
[5	40	40	16414	43225	87421	57301	10887	23268
1	5	20	80	23952	59914	138680	85496	16673	33544
	10	40	80	26932	70720	207846	123536	18651	39120

ATHENS UNIVERSI OF ECONOMICS AND BUSINESS

Sensitivity Analysis Results (VI)

Bundling intensity and SLA offers availability

- Under intense bundling, Distributed models do not scale.
- A restriction on the **maximum hops** a bundled SLA offer can reach may **mitigate** this issue.
 - restrictions may lead to low availability of SLA offers, hence customer requests for remote PoPs cannot be immediately satisfied.

• The **results** show

- ✓ A bundling policy of maximum two SLA offers (3 hops), the message overhead is lower than all the other coordination models but the SLA offers availability drops to 19%.
- A bundling policy of maximum three SLA offers (4 hops) leads to an availability of 56% but for double the message overhead of the Centralized models.
- ✓ Note that after **bundling four SLA offers** all destinations in our topology can be reached.

Conclusions and Future Work

- We introduced multiple coordination models for the service composition in the 5G multi-provider ecosystem.
- We simulated an Internet-like environment of multiple 5G providers and evaluated the models under different setups
 - Sensitivity analysis on the different parameters of the ecosystem.
- Our results reveal that
 - **Distributed** models scale significantly worse than Fully and per-Provider Centralized models.
 - As the ecosystem becomes larger the **hybrid/per-Provider Centralized models** scale best.

Future work

- Evaluation of the coordination models over **different topology structures**.
- Define **smart bundling policies** for the Distributed models.
- Investigate how the **pricing policies** are affected by the selected coordination models.

Thank you for your attention!

Questions?

