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Abstract—Energy flexibility management can significantly support
the smoother and more cost-effective green transformation of the
energy mix. However, effective management of the flexibility of
residential loads can only be achieved if users are successfully
engaged into the process. In this paper, we propose an optimization
framework that incorporates provision of different forms of monetary
and non-monetary incentives to prosumers, i.e., rewards, lotteries,
peer-pressure, for providing flexibility at specific time slots. Economic
rewards are offered according to a simple, yet very powerful, linear
incentives’ function. Dynamic tariffs per time slot for purchasing
and selling electricity are accommodated in this framework as well.
The optimization problem of the DR aggregator is modeled as a
cost-minimization one; its solution as a Stackelberg game is outlined
for the case of full information on user-utility functions by the DR
aggregator. Moreover, a distributed iterative algorithm is developed
for solving the flexibility-management problem in the case where
user-utility functions are not known to the aggregator. Numerical
results show that this optimization framework is able to elicit the
required flexibility from users at a minimum incentive cost, especially
when monetary rewards are combined with peer pressure.

Index Terms—rewards, peer-pressure, lottery, leader-follower
game, dynamic electricity tariffs, feed-in tariffs

I. INTRODUCTION

The liberalization of the electricity markets, energy crises
creating economic pressures, and environmental regulations are
all suggesting fewer traditional central power plants and the
employment of more distributed and renewable energy resources
(DER/RES) to address future energy needs. Towards this direc-
tion, policy makers and energy market participants concur that
Demand Response (DR) for energy flexibility management and
consumption curtailment is a critical resource for achieving an
efficient and sustainable electricity system at a reasonable cost.
This fact is reflected in the recent European regulation (Energy
Efficiency Directive 2018/2002, Electricity Regulation 2019/943
and Directive on Electricity 2019/944). Flexibility management
can enable the smooth introduction of DER/RESs to the electricity
grid without impacting its stability by appropriately balancing
supply with demand, and thus postponing huge investments in the
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grid infrastructure. Prosumers with rooftop photovoltaic panels
(PVs) represent a rapidly developing and important category of
potential flexibility providers. A long list of flexibility manage-
ment solutions for residential consumers/prosumers have been
proposed [1]. However, they mostly involve direct load control
or fixed rule-based strategies for acquiring flexibility, and thus,
user engagement in flexibility management programs cannot be
taken for granted.

In this paper, we focus on implicit and explicit incentive
schemes for flexibility management. To this end, we propose an
innovative model for optimally aggregating a specific amount of
flexibility from prosumers with PVs, involving dynamic pricing,
feed-in tariffs and explicit incentives in the form of monetary
rewards, peer pressure and lotteries. Flexibility provision can be
either automated (upon user approval) or manual involving user
action on shifting/curtailing electricity consumption. The overall
problem of aggregating the desired flexibility at a specific time
slot can be seen as a Stackelberg (i.e., leader-follower) game,
between the DR aggregator and the users that play it by solving
their respective problems. The aggregator’s optimization problem
is a cost minimization one for providing incentives to acquire
the desired flexibility, while the problem of each prosumer is net
benefit maximization involving flexibility incentives, comfort and
electricity cost. For simple cases of user utility functions known
to the aggregator (full-information case), an analytical solution to
the overall flexibility management problem can be found. For the
case that user utilities are not known to the aggregator, we develop
a distributed iterative algorithm that finds optimal rewards for
acquiring the desired flexibility from each prosumer based on gra-
dient approximation. We extend our model to aggregate flexibility
for multiple time slots and to include additional incentive schemes,
namely peer pressure and lotteries. Based on numerical evaluation
with real consumption data, we showcase that our model can
effectively accommodate and combine different implicit or explicit
incentive schemes. Also, we establish the effectiveness of the
optimization framework to acquire the desired flexibility at the
minimum cost for incentives, especially when peer pressure and
monetary rewards are combined. Finally, we find that optimizing
flexibility rewards jointly for multiple time slots is more cost-
effective than performing myopic optimization of rewards for each978-1-6654-3254-2/22/$31.00 ©2022 IEEE



different time slot consecutively.

II. RELATED WORK

There is significant related work on energy flexibility and
Demand Response (DR). A recent review [1] has presented a
long list of flexibility quantification metrics, and control and
optimization strategies for flexibility management for residential
users. 51% of strategies in [1] employ direct load control out
of which 72% use optimal controls, while 28% use rule-based
controls, e.g., for water heaters, shift the water heating power
demand from peak periods to off-peak periods. Our approach
focuses on implicit and explicit incentives for prosumers, so that
the provision of flexibility (either based on direct load control or
not) is beneficial for prosumers.

An optimization problem to satisfy distribution system operator
(DSO) balancing requests on local flexibility markets has been
proposed in [2]. It has been formulated as a mixed integer linear
problem (MILP) one for cost minimization taking into account
flexibility of various residential loads, costs for providing various
types of flexibility, e.g., costs for reducing output of distributed
energy resources, costs for battery charging/discharging, and
prices (i.e., rewards) for load shifting/curtailment to residential
customers. Real-time electricity tariffs and different incentive
schemes are not considered, while direct load control of all
flexible loads is assumed in [2], as opposed to the present
work. A flexibility-constrained energy management model has
been proposed in [3] for smart homes with PVs and batteries.
The flexibility constraint limits the ramp rate (i.e., difference in
purchased/sold power from the smart home to the main grid
between two consecutive time slots) to increase the flexibility
of the power system. The home energy management problem,
modelled as MILP, takes into account prices for purchasing/selling
electricity and efficiency parameters for the PV and the energy
storage. However, the approach in [3] does not take into account
user discomfort from the modified energy-consumption schedule
or any incentive schemes other than the feed-in tariffs, as opposed
to the present work. A model (MILP) for the energy management
of a community of houses has been proposed in [4], which
involves trading of energy among the houses so that the cost of
purchasing power from the main grid especially in peak hours is
minimized. An energy flexibility management framework, based
on the concept of multi-energy lattice has been proposed in
[5]. Energy flexibility arises both from single- and cross-layer
energy balancing. The problem is formulated as a two-step MILP
problem, based on multi-energy baselines to cope with the energy
demand across multiple energy vectors, and flexibility margins
and economic convenience to offer different frequency control
ancillary services.

Also, in the DR literature, a real-time pricing (RTP) DR scheme
has been proposed in [6], where, given optimal prices, consumers
take consumption-scheduling decisions aiming at individual net
benefit maximization. The utility company has to choose the
optimal real-time prices to set, so that the social welfare of

the consumers is maximized. The problem is solved based on
a distributed iterative algorithm between the utility company and
the consumers. Social welfare maximization of consumers is also
the goal of the operator in [7], where the optimal strategy is to
set prices equal to the marginal cost of supply. In [7], they derive
a convergent distributed algorithm based on dual decomposition
method. A cost-minimizing operator that provides incentives to
residential users to shift their demands through dynamic pricing
has been considered by [8]. In [9], they aim to design an optimum
DR scheme that not only reduces costs and improves reliability,
but also increases customer acceptance of the DR program by
limiting price volatility. Both price-based and incentive-based DR
programs are considered in [9]; especially for the latter, they
calculate the required energy load change, the corresponding
adequate incentive value and the best timing to implement DR. In
[10], they propose to compensate consumers for their discomfort
due to modifications in their consumption patterns in inclusive DR
(iDR) schemes. It is argued in [10] that whenever participating in
DR a user should be offered incentives at least as high as his
reduction in net benefit, that is loss of utility (due to discomfort)
minus savings in the energy bill. Specific behavioral character-
istics delineating users’ behavior (e.g. altruism) are incorporated
in users’ utility functions in [11] employ a customer targeting
approach, so that the DR designer constructs ADR contracts with
appropriate personalized rewards for customers to (a) enroll in
them in the first place and (b) extend/renew their ADR contracts
based on customer feedback on their satisfaction from ADR
contracts. Overall, the DR designer in [11] aims to minimize
the total endowment for achieving the needed energy curtailment,
while maintaining the customer satisfaction ratio over a certain
threshold.

III. THE CONTEXT

We consider the case of an aggregator or a utility acting as a
Balancing Responsible Party (BRP), referred to as DR aggregator.
The DR aggregator is responsible to provide adequate DR signals
to consumers/prosumers, so as to aggregate a specific amount of
flexibility in one or several slots from a community of prosumers
in a geographical area. We assume for the time being that the
requested flexibility is positive, i.e., either electric load reduction
or electric power injected into the grid. The requested amount
of flexibility is assumed to be predicted based on DER/RES
power generation or electricity demand forecasts. Home Energy
Management Systems (HEMSs) are assumed to be installed at
all prosumer/consumer premises. In particular, HEMS provide
power-consumption readings from individual devices at residential
premises, e.g., heat pumps and boilers, and readings from sensors
for comfort (i.e., temperature, humidity). When available, PVs
generate electricity that can be either injected directly into the
grid or consumed locally upon production, since we assume that
there is no electricity storage capability. The customer pays only
for the total net power consumption in each time slot of the billing
period (please see below), or he is compensated according to feed-



in tariffs in case of excess local production per slot. No other kind
of selling of electricity actually occurs.

Flexibility is expected to be provided by consumers/prosumers
based on DR signals that include high network/retail tariffs for
specific hours announced one day ahead. The users are expected
to modify their electricity-consumption schedules in response
to these higher tariffs (implicit DR), so as to minimize their
electricity bill, and thus offer flexibility. In addition, DR incentive
signals may include explicit incentives, such as monetary rewards,
tokens for participating in lotteries, or the relative performance of
the user in terms of flexibility as a form of peer pressure.

The users practically cannot opt-out. However, they are free to
choose their own self-optimizing way to react to DR signals, by
adjusting (or not) their electricity consumption schedule accord-
ingly. Hence, while they cannot declare opting-out, they may opt
out in practice by not responding to DR signals. Users are able to
choose which activities involving electricity consumption to shift
in time or cancel being also aided by the HEMSs. The flexibility
offer can be estimated based on current load profiles of the users.
This offer is declared ahead of the DR event, and can be verified
by means of the HEMSs.

IV. THE MODEL

We consider a set N of N consumers/prosumers. Each day
is divided into T time slots, indexed by t. For each consumer
n ∈ N , we denote as xn,0 the daily vector of baseline energy
consumption per time slot prior to DR. Moreover, we assume that
some customers possess solar panels. For each such prosumer n,
we denote as wn = {wtn}, ∀t ∈ T the energy generation vector
of his solar panels.

A. DR Aggregator’s problem

We denote as xτn the flexibility offered by consumer n at time
slot τ . We assume that each consumer n is compensated according
to a linear incentives’ policy. That is, he receives by the DR
aggregator incentives rn per flexibility unit provided thereto. Then,
the objective of the DR aggregator is to select the appropriate set
of consumers and the flexibility xτn to be asked by each of them
so that the required flexibility Xτ is met at a specific time slot of
interest τ with the minimum total amount of incentives offered.
xn,1 = {xtn,1}, ∀t ∈ T is the updated daily consumption schedule
for consumer n subject to changes xn = xn,0 − xn,1 throughout
the day due to the flexibility event at time slot τ . Then, the DR
aggregator’s optimization problem can be formulated as follows:

Minimize:
∑
n∈N
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where yn ∈ {0, 1} is the decision variable for targeting user n. ψt

is the electricity unit price at time slot t, while φt is the feed-in
tariff for injecting renewable energy into the network, which can
be different per time slot t. Recall that no other kind of energy
trading is assumed to take place. Constraint (3) is an incentive
compatibility condition, which ensures that each targeted user will
indeed offer the flexibility requested thereby, because he is better-
off in terms of net benefit than by not participating in DR. Also,
constraint (4) is a feasibility condition for flexibility provision that
dictates flexibility per user to be upper bounded by the sum of
his baseline energy consumption and his solar energy production
at time slot τ .

To simplify our problem, we henceforth consider a simpler DR
incentives policy. In particular, we assume that all users are offered
the same incentive r per flexibility unit, while all users may offer
flexibility (i.e., there is no targeting). This amounts to a more
inclusive DR incentives policy, where all consumers individually
decide how to participate or not, subject to the common per unit
incentives being publicly announced by the DR aggregator. In this
case, the formulation of the DR aggregator’s optimization problem
becomes:

Minimize:
∑
n∈N
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s.t. (4),
∑
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This optimization problem can be solved by the aggregator w.r.t.
r, xn,∀n ∈ N when the DR aggregator has full information
concerning the utility functions, i.e., when Un(·) is known to the
aggregator for each customer n, as explained in Section IV-C.
Otherwise, we have to resort to a distributed and iterative solution,
which is described in Section IV-D. In that case, the aggregator



solves the optimization problem of equation (5) considering only
the constraint (6), while the user solves his own optimization
problem, which is introduced in Section IV-B.

B. User’s problem

We assume that users are offered by the DR aggregator incen-
tives r per flexibility unit at time slot τ . Then each user n has to
select his optimal flexibility vector xn, by solving the following
problem:

Maximize: rxτn + U(xn,0 − xn)− Un(xn,0)
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For user n to participate in DR, two conditions should hold:
• Individual Rationality (IR): The net benefit from participating

in DR should be positive.
• Incentive Compatibility (IC): The net benefit from participat-

ing in DR should be higher than that when not participating,
or equivalently the difference of these two net benefit values
should be non-negative; this amounts to condition (7).

Since xn,0 > 0, for each user n, his net benefit when not
participating in DR is positive. Thus, IR and IC conditions are
concurrently met when the IC condition (7) is true.

Our analysis to follow in Section IV-C is applicable to any
increasing and differentiable user utility function. Nevertheless,
for simplicity, we employ the following utility function U(·):

Un(xn) =
∑
t∈T

βtn(x
t
n,0 − xtn) , (9)

where βtn = xtn,0/max{xn}. According to this function, a
reduction (resp. increase) in energy consumption at a certain
time slot results in loss (resp. gain) of comfort, and thus of
utility, for the user. These utility deviations are summed in
a weighted fashion over the entire time period T considered,
with a normalized weight per slot that is proportional to the
baseline electricity consumption during that time slot, expressing
the relative importance that the user assigns to consuming energy
at that particular time of the day.

C. Equilibrium

The aforementioned problems, in fact, can jointly be seen as a
Stackelberg (i.e. leader-follower) game: the DR aggregator moves
first to select incentives r and each user n follows by selecting his
flexibility xn. The overall optimization problem (comprising the
DR aggregator’s problem and those of the users) can be solved
by means of backwards induction. That is, the user’s problem
is solved first for each user n, to find the optimal flexibility

xn, assuming that optimally chosen incentives r∗, applicable for
the entire population of users, have been announced by the DR
aggregator. Then, the DR aggregator’s problem could be solved,
if the dependence of xn, ∀n ∈ N to r∗, were known expressed
in closed form. However, this is a very restrictive assumption.
Hence, we resort to a distributed iterative algorithm for deriving
the desired equilibrium point.

D. Distributed Algorithm

As already explained, in the case where user utility functions
are not known, then the DR aggregator and the user should solve
their individual problems, i.e., (5) s.t. (6) for the DR aggregator
and (8) for the user respectively. For this purpose, we introduce the
following distributed iterative approach: The DR aggregator and
the consumers jointly compute an equilibrium based on a gradient
approximation algorithm [12], where (i) the DR aggregator sets
the reward per flexibility unit and (ii) each prosumer solves his
own maximization problem in response.

At the beginning of each round k, the DR aggregator announces
the per unit of flexibility incentives r. Each user n updates
his offered flexibility x′n according to the formula below and
announces it to the DR aggregator.

xt,k+1
n = min{xtn,0, xt,kn + ξ(rk + (−βt)+

ψt1(xtn,0 − xtn − wt)− φt1(wt − xtn,0 + xtn)} (10)

1(·) is an indicator function, which equals 1 if its argument is
greater than zero, or 0 otherwise. Then, DR aggregator updates
the per unit of flexibility incentives r according to the formula
below.

rk+1 = max

{
rk + ξ

(
Xτ −

∑
n∈N

xτn

)
, 0

}
(11)

At the end of each round, the DR aggregator sets r = r′ and
each customer n ∈ N sets xn = x′n. This iterative process stops
when the values of r and xn,∀n ∈ N converge, provided that the
desired flexibility at the time τ has been aggregated.

E. Flexibility in Multiple Slots

We now consider the case that the aggregator requests flexibility
in multiple time slots S. One may argue that this problem can
be solved by consecutively solving problem (5) for each of the
time slots of interest. However, such a solution would only be
suboptimal, as the flexibility provided separately per time slot
would only be “myopic” without being able to find the updated
consumption schedules that joint satisfy the flexibility objectives.
The multi-slot aggregator problem is given by:

Minimize:
∑
τ∈S

∑
n∈N

rxτn (12)

s.t.
∑
n∈N

xτn ≥ Xτ ,∀τ ∈ S (13)
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Again, in case of full information on user utilities by the DR
aggregator, this problem can be seen as a Stackelberg game
between the DR aggregator and the users and it can be solved
similarly to the approach described in Section IV-C. In case
of hidden information on user utilities, a distributed iterative
approach similar to that of Section IV-D can be followed to find
the solution.

V. ADDITIONAL INCENTIVES

A. Peer Pressure

One behavioral driver for reducing power consumption is peer
pressure. Peer pressure can be exercised for flexibility manage-
ment simply by privately announcing to the user the relative
performance percentile to which he falls according to his offered
flexibility in a number of previous DR events. We can assume that
the user enjoys some personal satisfaction hi from being ranked
first. The higher the flexibility offered by the user at the time
duration of interest, the higher the probability that this user is
ranked first. We approximate that probability below.

First, we remind some material from the theory of order
statistics [13]. Let X1, . . . , XN−1 be N − 1 independent and
identically distributed (i.i.d.) random variables. In our case, the
random variable Xj denotes the energy flexibility of user j. The
order statistics X(1), X(2), . . . , X(N−1) are also random variables,
defined by sorting the realizations of X1, . . . , XN−1 in non-
decreasing order. Namely, for each realization ω, we arrange
the sample values X1(ω), . . . , XN−1(ω) in non-decreasing order,
X(1)(ω) ≤ X(2)(ω) ≤ . . . ≤ X(N−1)(ω), where (1), (2), . . . , (N)
denote that permutation of indices 1, 2, . . . , N − 1 for which the
random variables X are ordered. Thus, we have:

X(1) = min{X1, . . . , XN−1}
...

X(N−1) = max{X1, . . . , XN−1} .

(15)

For a user n to be ranked first, it is necessary and sufficient that
his flexibility x if higher than the maximum flexibility of all N−1
other users. For a fixed value of x, this probability is given by:

FX(N−1)
(x) = Prob(max{X1, . . . , XN−1} ≤ x)

= |FX(x)|N−1 , (16)

where FX(·) is the common cumulative distribution function
(CDF) of the variables X1, . . . , XN−1. This CDF can be es-
timated based on prior flexibility performance of the users. If

the baseline consumption of the users are identically distributed
random variables, then a simple approximation, this CDF can be
assumed equal to that of the baseline consumption of the users in
the flexibility slot scaled by X/

∑
n∈N xn,0, which is the factor

by which the total consumption is discounted due to offering of
flexibility. The term FX(N−1)

(
∼
xn) · hn is the average benefit of

a user n from being ranked first when exerting flexibility
∼
xn.

This term should be added to the user problem (8) to express the
incentives by the mechanism of peer pressure.

B. Lotteries

According to prospect theory [14], when presented with alterna-
tives that involve risk and uncertainty, people tend to prefer higher
gains with small probability than equivalent (on the average) gains
with certainty. Flexibility rewards cannot always be easily imple-
mented due to significant changes required to the billing system
and complexity for their inclusion in the accounting records of
the utility company or aggregator. Alternative to the flexibility
rewards, albeit with simpler implementation in practice, could be
the organization of weekly/monthly lotteries for flexibility with a
certain price of higher value V . The higher the participation of the
user to flexibility events and the higher the flexibility offered, the
higher the probability to win the lottery. This could be achieved in
practice by providing a number of lottery tickets to each user that
is proportional to the flexibility he offers over a certain period.
Then, a ticket would be drawn from the lottery to determine the
winner of the particular period. A new lottery would subsequently
be started for the next period. The probability for a user to win
the lottery is proportional to his individual flexibility over the
sum of total flexibility provided by all users. However, according
to prospect theory, since the probability p to win a high-valued
prize is low, the satisfaction of a user from this prize is given by
π(p) · V > p · V ; this is referred to as “hope of large gain”. As
compared to the reward per flexibility unit, a lottery can be more
motivating for flexibility management for the same incentive cost.

VI. EVALUATION

We employed MATLAB and the REDD dataset [15] to evaluate
the proposed optimization framework. The baseline consumption
of the houses is depicted in Fig. 1a. We assume that the requested
flexibility is 2KWh at the time slot of 12pm-1pm. We consider that
the off-peak tariff per electricity unit is 0.1e/KWh, while the peak
tariff, employed between 12pm-1pm, becomes 0.4e/KWh. We
assume that the utility function (9) expresses the satisfaction for
user n from his consumption schedule. We assume the parameter
ξ = 0.01 in the distributed algorithm of Section IV-D.

For peak-tariff pricing at the time slot of the desired flexibility
without any flexibility rewards (r = 0), the optimal solution to
problem (5) is depicted in Fig. 2a, while its decentralized solution
is depicted in Fig. 2b. Observe that flexibility distributions are
aligned, i.e., Pearson correlation was found to be 0.75. However,
in the decentralized solution, there are some rebound effects



(a) (b)

Fig. 1: (a) The baseline consumption. (b) PV power generation
hourly schedule per prosumer.

(a) (b)

Fig. 2: Peak-tariff pricing: (a) Optimal flexibility per user. (b)
Flexibility per user with the distributed algorithm.

regarding consumption in the other time slots. The decentralized
solution has converged in 46 iterations.

If no peak-tariff pricing is employed, but flexibility rewards are
in order, then the desired flexibility is obtained (cf. Fig. 3a) at
a cost for incentive rewards (cf. Fig. 3b). The total amount of
rewards given is 1.47e for this flexibility event. The flexibility
distribution from optimal rewards is almost the same with that
of Fig. 2a, i.e., Pearson correlation coefficient is 0.974, while
total flexibility is 2KWh in both cases, which means that the
users offer the same flexibility regardless of the exact incentive
mechanism employed, i.e., peak-tariff pricing or rewards. In Fig.
3b, we also compare the optimal rewards with those resulting
from the distributed algorithm (that converged in 36 rounds). The
distribution of rewards per user from the distributed algorithm is
smoother than the optimal one, while the total cost of incentives
is slightly higher than optimal, i.e., 1.68e, as expected.

We now consider the case of solar power generation according
to Fig. 1b. We assume that net metering is employed, i.e., the feed-
in tariff is 0.1 e/KWh. When flexibility rewards are employed
instead of peak-tariff pricing, then the flexibility provided by the
users and their respective rewards are depicted in Fig. 4a and
Fig. 4b respectively. The total required flexibility rewards here
are higher, i.e. 1.67e; otherwise, the users would prefer the feed-
in tariff for their PV energy instead of providing it to the DR
aggregator.

We also evaluate the alternative incentive mechanisms in terms

(a) (b)

Fig. 3: Flexibility rewards: (a) Optimal flexibility per user; (b)
Flexibility profit per user with optimal and suboptimal (dis-
tributed) rewards.

(a) (b)

Fig. 4: PV power generation: (a) Optimal flexibility per user, (b)
given specific flexibility rewards.

of effectiveness for flexibility management. Employing only peer
pressure and assuming satisfaction from being ranked first hn =
1,∀n ∈ N , the flexibility offered by the users in the time slot
of interest is depicted in Fig. 5a. Combining peer-pressure with
rewards results in lower rewards for aggregating the same amount
of flexibility, as illustrated in Fig. 5b.

Moreover, we employed lotteries alone assuming the lottery
prize equal to the total cost for rewards per flexibility event, i.e.,
1.47e, so that a fair comparison can be made. The probability
weighting function (i.e., e−(−ln(x))

0.5

) [16] that we employed to
express the user prospect with respect to the probability to win is
depicted in Fig. 6a. In Fig. 6b, we illustrate the flexibility offered
by each user with the different forms of incentive schemes (at the
same cost for rewards and lotteries).

Next, we consider the case where the aggregator aims to
find the optimal rewards in order to gather flexibility 2KWh
at each of three different time slots, namely 11am-12pm, 12-
1pm and 1-2pm hours. Employing the aggregate optimization
approach (12), we find that the optimal reward per flexibility
unit is 0.57 e/KWh. As depicted in Fig. 7, the optimal rewards
per user for the three time slots with the multi-slot optimization
framework are lower than those that are found to be needed by
employing the flexibility optimization approach (5) for each of
the three time slots consecutively. Separate consecutive flexibility
optimizations per time slot give optimal rewards per flexibility unit



(a) (b)

Fig. 5: (a) Optimal flexibility per user with peer pressure. (b)
Flexibility rewards per user when rewards are combined with peer
pressure.

(a) (b)

Fig. 6: (a) A probability weighting function π. (b) Comparison of
optimal flexibility per user with different incentive schemes.

(a) (b)

Fig. 7: (a) Optimal flexibility rewards employing (a) multi-slot
optimization, (b) consecutive myopic optimizations per time slot.

of 0.63e/KWh, 0.73e/KWh and 0.82e/KWh respectively for the
three time slots. Therefore, as expected, myopic optimization of
the incentives for flexibility per time slot is outperformed by the
multi-slot optimization approach.

VII. CONCLUSION

In this paper, we proposed an innovative optimization frame-
work for flexibility management of prosumers with rooftop PVs.
Our model can accommodate implicit and explicit incentive
schemes, namely dynamic pricing, monetary rewards, lotteries and
peer pressure for successfully engaging prosumers into flexibility
management, as well as multiple non-necessarily consecutive time

slots for flexibility requests. The overall optimization problem can
be seen as a Stackelberg game that can be analytically solved by
the flexibility aggregator for simple cases of user utility functions
that are known to it. We also proposed a distributed iterative
algorithm between the flexibility aggregator and the prosumers
to solve the problem in case of hidden information on user utility
functions. By means of numerical evaluation with real data, we
demonstrated the effectiveness of the model to find optimal user
consumption schedules that provide to the aggregator the desired
flexibility in specific time slots at the minimum cost for incentives,
when monetary incentives are employed alone or combined with
non-monetary ones. As a future work, we plan to accommodate in
the model electricity storage capability at the prosumer premises.
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